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Abstract

An intelligent system reasons about--controls, explains, learns about--its actions, thereby

improving its efforts to achieve goals and function in its environment. In order to perform

effectively, a system must have knowledge of the actions it can perform, of the events and

states that can occur, and of the relationships among particular instances of those actions,

events, and states. We propose to represent such knowledge in a hierarchy of knowledge

abstractions and to impose uniform standards of knowledge content and representation on

modules within each hierarchical level. At the root of this hierarchy, the BB1 blackboard

control architecture can support a variety of task-specific framewortcs, each of which can

accommodate a range of domain-specific applications. Conversely, an application system such

as PROTEAN instantiates the knowledge structures in a framework such as ACCORD, which

instantiates the knowledge structures in BB1. We refer to the evolving set of such modules as

the BB" environment. To illustrate our approach, we describe: (a) BB1 and its capabilities for

control, explanation, and learning; (b)ACCORD, a framework for solving arrangement

problems by means of an assembly method; (c) two applications of BB1-ACCORD, the

PROTEAN system for protein-structure modeling and the SIGHTPLAN system for designing

construction-site layouts; and (d) two hypothetical multi-faceted systems that integrate

ACCORD and PROTEAN with other frameworks and applications. We show how ACCORD

enhances PROTEAN's use of b31's reasoning capabilities and how it facilitates the building of

new application systems, such as SIGHTPLAN and the two multi-faceted systems. We

summarize the current state of the BB* environment and our plans for extending it. Finally, we

assess BB* both as a computing environment and as a theory of intelligent systems.





1. Overview

"Human intelligence depends essentially on the fact that we can represent
in language facts about our Jituation, our goals, and the effects of the
various actions we can perform." John McCarthy E35J

"In the knowledge is the power." Edward A. Feigenbaum _14J

"The fact, then, that man)' complex systems have a nearly decomposable,
hierarchic structure is a major facilitating factor enabling us to
understand, to describe, and even to 'see' such syste'ms and their parts."
Herbert ,4. Simon _47_]

We begin with a premise: An intelligent system reasons about its actions. Of course, we do

not mean to suggest that a system should engage in extended contemplation of every one of its

computational and physical actions, but rather: (a) that it can reason about many of its actions;

(b) that it does reason about them much of the time; and (c) that its reasoning improves its

efforts to achieve goals and otherwise function in its environment.

A system might reason about its actions in various ways and with various consequences (see

Figure la) . For example, a system might control its actions: decide which actions to perform

at particular points in time. Control reasoning can affect the resources the system consumes in

pursuing a goal, the side effects it produces, and the probability of achieving its goal

[8, 9, 13, 17, 23, 26, 27]. As a second example, a system might explain its actions: describe

the ways in which the actions it intends to perform or ha_ performed serve its goals.

Explanation typically serves social functions, such as teaching another individual how to

perform a task or persuading another individual that one is performing the task competently

[5, 6, 21, 22]. As a third example, a system might learn about its actions: modify its ability

or inclination to perform particular actions in appropriate circumstances. Learning enables the

system to expand and improve its capabilities [24, 31, 32, 35, 38, 39, 45]. While a system could

perform many other important types of reasoning about its actions, we focus on control,

explanation, and learning.

Insert Figure 1

Given the premise above, we put forth a hypothesis: In order to perform effectively, an

intelligent system must have knowledge of its actions. It must have knowledge of the actions

it can perform, of the events and states that can occur, and of the relationships among

particular instances of these actions, events, and states. For example, it must know: the actions



that are relevant to its current task; the enabling conditions required by particular actions; the

cost, reliability, and side effects of particular actions; the internal and external events and

states whose occurrences contribute to or hinder performance of its task; the power of

particular actions to bring about particular events and states; and the power of external forces

to bring about particular events and states.

In our work, we formulate explicit, interpretable representations of these and other kinds of

knowledge (see Figure lb) as a foundation for intelligent behavior. Thus, we define

"knowledge" broadly, as "that which is known. "2 In fact, most computational objects in our

systems (all except the basic architectural cycle, low-level data-retrieval functions, and user

interface) appear as elements of a well-structured, modular, declarative knowledge base. As

such, they are amenable to knowledge-level operations, such as acquistion, modification,

verification, deduction, induction, instantiation, and comparison. Moreover, we can

incrementally improve almost any aspect of a system's behavior by extending the depth or

extent of its knowledge. We have begun to construct an expanding edifice of such knowledge

for a variety of problem classes, problem-solving methods, and subject-matter domains.

In constructing this edifice, we emphasize a design principle: We represent knowledge in an

abstraction hierarchy. Although "true" knowledge abstractions probably lie on a continuum, we

currently focus on three particular levels--architecture, framework, and application.

At the most general level, we define an architecture to comprise: (a) the set of basic

knowledge structures used to represent all actions, events, states, and facts in a system; and (b)

a mechanism for instantiating, choosing, and executing actions. Architectural knowledge is

independent of problem class, problem-solving method, and subject-matter domain. For

example, the blackboard control architecture [23], which is implemented as the BB1 system

discussed below, supports applications as varied as protein-structure analysis [4, 25, 29], process

planning [41], and autonomous vehicle control [43]. In addition, BB1 provides specific

knowledge structures and a powerful mechanism to support intelligent control, explanation,

learning.

At the intermediate level, we define a framework as the set of knowledge structures used to

represent actions, events, states, and facts involved in performing a particular task. That is, a

framework comprises the knowledge structures involved in solving a particular class of

2The American Heritage Dictionary of the English Language,1981, "Knowledge," definition # 3.
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problemswith a particular method,but independentof subject-matterdomain. For example,

the arrangement-assembly framework, which is implemented as the ACCORD knowledge base

discussed below, embodies the knowledge used to solve arrangement prot_lems by means of an

assembly method. However, the knowledge in ACCORD applies to arrangement-assembly tasks

in such varied subject-matter domains as protein-structure analysis, construction-site layout,

and travel planning.

At the most specific level, we define an application as the set of knowledge structures that

instantiate particular actions, events, states, and facts to solve a particular class of problems by

means of a particular method in a particular subject-matter domain. For example, the

PROTEAN system I'4, 25, 29] embodies the _:nowledge used to determine the three-dimensional

structures of proteins--that is, to solve arrangement problems in the domain of protein

chemistry by means of the assembly method.

As illustrated in Figure lc (see also Table I), BB1, ACCORD, and PROTEAN are elements

of a knowledge abstraction hierarchy. BB1 can accommodate a variety of modular frameworks,

one of which is ACCORD. Similarly, ACCORD (and each other framework) can accommodate

a range of modular applications, one of which is PROTEAN. (As Figure lc shows, many

current applications are implemented directly in BB1.) We refer to the evolving set of such

modules as the BB* environment.

Conversely, a given application system composes modules from the BB* environment in

several layers of implementation. For example, PROTEAN's knowledge about constructing

proteins instantiates and configures a number of ACCORD's more general knowledge structures

for assembling arrangements. Similarly, ACCORD's knowledge structures instantiate and

configure a number of BBI's still more general knowledge structures about problem-solving,

control, explanation, and learning. When PROTEAN goes to work on a problem, its actions are

interpreted through these several layers of implementation.

-m_4 ...........

Insert Table )

In adapting this widely accepted software engineering principle--generally referred to as

modular and layered design [18, 19, 49]--to intelligent systems, we achieve several advantages.

First, each abstraction level offers certain representational and computational services to higher

levels, while shielding them from the details of implementation. Second, we can understand



complexsystemsin terms of their simpler modular components. Third, we can investigate and

test alternative implementations of modules at one level independently of the modules at other

levels. Fourth, we can eliminate levels from applications that do not require their services.

Fifth, we can achieve additive and, in some cases, multiplicative improvements in efficiency

across levels [44]. Finally, we can apply general knowledge modules in an appropriate variety

of contexts and configure selected lower-level knowledge modules for a variety of specific

purposes.

We impose one additional constraint on our knowledge abstraction hierarchy: Modules

within a level must meet uniform standards of knowledge conter.t and representation.

Accordingly, we adopt a single architecttire, BB1. Although BB1 accommodates multiple

frameworks, each of them must provide the same core categories of knowledge within a

specified representation scheme. Similarly, each application must provide another set of core

knowledge categories within another specified representation scheme.

This constraint offers several related advantages. First, we can define new application systems

by configuring and augmenting existing knowledge modules within a level. Second, we can

identify and eliminate redundancy in the contents of independently acquired modules within an

application system. Third, we can organize modules in any appropriate organizational scheme.

In particular, we can organize them in a conventional "pipeline," such that a succession of

modules receive, process, and pass on information. Alternatively, we can organize them to

operate more intimately: operating simultaneously, sharing intermediate results, and affecting

one another's behavior. In fact, a system can reason about how to select and organize modules

to solve new problems. Fourth, we can superimpose generic capabilities fo," control,

explanation, and learning upon the designated configurations of modules. In sum, uniformity

of content and representation within a level allows us to achieve the conventional capabilitiy

of open systems inlercon_ection [51] and to strive toward a more ambitious capability that we

will call open systems integration. It raises the possibility of incrementally increasing the

quantity and variety of knowledge within an application system, while preserving a well-

structured foundation and a coherent face for the system as a whole (see Figure ld).

Our objectives in this work are two-fold. First, we wish to develop a rich and varied family

of reusable modules for building intelligent systems. System builders should be able to build

new systems by configuring appropriate subsets of these modules in appropriate organizational

schemes. Where new modules are needed, system builders should be able to introduce them into

the existing family and integrate them into new systems with ease. The resulting systems should
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bewell-structured,perspicuous,modifiable,and extensible.Second,wewish to develop a theory

of intelligent systems. The theory must provide: (a) a great range of problem-solving skills,

including the ability to solve a variety of problem classes with a variety of problem-solving

methods in a variety of subject-matter domains; (b) the ability to apply any available

knowledge to improve problem-solving performance; and (c) the ability to reason about--

control, explain, and learn about--action. We believe that our approach to developing the BB*

environment enables us to progress toward both objectives.

The remainder of this paper develops and substantiates the four themes introduced above and

displayed in Figure 1 as follows. Section 2 Provides an overview of BB1 and presents examples

from the PROTEAN system to illustrate BBI's architectural support for general problem

solving, as well as for intelligent control, explanation, and learning. Section 3 presents the

arrangement-assembly framework (ACCORD) to-illustrate the standard knowledge content and

representation required to define a framework. It also describes the associated BB1 framework-

interpreter. Section 4 illustrates reasoning within the BB* environment. It shows how

PROTEAN is reimplemented in ACCORD, describes the advantages of that implementation

and illustrates its enhancement of PROTEAN's reasoning abilities. "Section 5 discusses

knowledge engineering within the B8* enviro0ment. It describes the design and implementation

of a prototype SIGHTPLAN system [50] (for designing construction-site layouts) within BB1-

ACCORD and examines the applicability of ACCORD to arrangement-assembly tasks in other

domains. Section 5 also introduces a new c!ass of multi-faceted systems to illustrate BB*'s

capability for open systems integration. Section 6 discusses the current state of the BB*

environment and our plans for extending it. Section 7 highlights the major results of the

paper.



2. BBI: An Architecture for Control, Explanation, and Learning

2.1 Overview of BBI

BB1 (see Figure 2) provides a uniform blackboard architecture for systems that reason about

their own actions as well as about particular problems and solutions. In a BB1 system,

functionally independent knowledge sources cooperate to solve problems by recording and

modifying solution elements in a global data structure called the blackboard. A system may

have three classes of knowledge sources. Domain knowledge sources solve domain problems on

a domain blackboard and send and receive messages along input/output channels. Control

knowledge sources construct control plans for the system's own behavior on control

blackboard. Learning knowledge sources modify knowledge sources and facts in the system's

knowledge base. All knowledge sources operate simultaneously and, when triggered, compete for

scheduling priority. BB1 also provides an explanation capability by which a system shows how

its actions fit into its control plan. The explanation module currently operates as part of the

basic execution cycle. On each cycle, the User has an opportunity to request an explanation.

The BB1 execution cycle comprises three steps:

1. The interpreter executes the action of one knowledge source, making changes to the

contents of the appropriate blackboard or the knowledge base.

2. The blackboard changes satisfy the conditions of other domain, control, and

learning knowledge sources. The agenda-manager adds corresponding KS,4Rs

(knowledge source activation records) to the agenda.

3. The scheduler rates each KSAR on the agenda against the current control plan and,

using a scheduling rule that is recorded on the control blackboard, chooses one

KSAR to execute its action. Unless it has been instructed to operate autonomously,

the scheduler also invites the user to request an explanation for the chosen action

or any of several other kinds of information or to override the scheduler's chosen

action with another one.

Insert Figure 2

Building an application system in BB1 entails: (a) building domain knowledge sources to



reasonabout a problem and its solution on a domain blackboard;and (b) building control

knowledgesourcesto reasonabout problem-solving strategy on the BB1 control blackboard. It

may also entail building a knowledge base of information used-by these knowledge sources. To

support these activities, BB1 provides generic knowledge structures for user-specified

blackboards and knowledge sources and a tool called BBEdit for instantiating them. In addition,

it provides knowledge structures for: blackboard events, KSARs, agendas, the control blackboard

and its levels. These knowledge structures are instantiated internally by BB1 during program

execution. However, they also may be accessed by user-specified knowledge sources. BB1

provides a variety of access functions for operating on instances of all of these knowledge

structures, as well as on intermediate results generated by knowledge sources during problem

solving.

Since we have discussed BBI's knowledge structures and processes in detail elsewhere [23], we

do not repeat that material here. Instead, we use the PROTEAN system, which is described

briefly in the next section, to illustrate BBI's knowledge structures and problem-solving style

and, especially, to demonstrate BBrs capabilities for intelligent control, explanation, and

learning.

2.2 A'n Illustrative BB1 Application: PROTEAN

2.2.1 PROTEAN's Problem: Protein-Structur e Analysis

PROTEAN's task is to identify the three-dimensional conformations of proteins)

Its input data include information about a test protein's primary and secondary structures.

The test protein's primary structure is its defining sequence of amino acids. For example,

Figure 3 shows the primary structure of a protein called the lac-repressor headpiece. In

addition the atomic architecture of each individual amino acid is known. For example, Figure

4 shows the architectures of two amino acids, alanine and tyrosine. The protein's secondary

structure is the sequence of higher-order sub-units (alpha-helixes, beta-sheets, and random-

coils) defined by the pattern of turns in the protein's primary structure. For example, Figure 3

shows the secondary structure of the lac-repress_r headpiece.

3The PROTEAN project is directed by Bruce Buchanan and Oleg Jardetzky. The research team includes: Barbara

Hayes-Roth, Russ Airman, Jim Brinkley, John Brugge, Craig Cornelius, Bruce Duncan, Alan Garvey, and Olivier

Lichtarge.



Insert Figure 3

Insert Figure 4

The input data also include a number of constraints on the test protein's conformation (see

Table 2). For example, there may be about 50-60 NOEs (Nuclear Overkauser Effects), each

of which indicates that two particular atoms in the protein are within 3-10 angstroms of one

another. There may be evidence that certain atoms are accessible to solvent, indicating that they

lie near the molecular surface of the protein. There may be information about the overall size,

shape, and density of the protein molecule.

Insert Table 2

Based on these different kinds of knowledge, PROTEAN must identify the test protein's

tertiary structure--the folding of its primary and secondary structures in three-dimensional

,pace (see Figure 5). Because the problem is undercon._trained, there may be many

conformations that satisfy the available constraints. PROTEAN must identify the entire family

of such conformations. Moreover, since proteins are known to be mobile in solution,

PROTEAN must reason about potential mobility in the conformations it identifies.

Insert Figure 5

2.2.2 PROTEAN's Approach: The Assembly Method

PROTEAN is designed to analyze protein structure by means of the following assembly

method.

Because protein-structure analysis entails a large combinatoric search space, PROTEAN

reasons about a test protein's conformation at four different levels of abstraction (see Figure

6): molecule, solid, superatom, and atom. By reasoning at a high level of abstraction first,

PROTEAN can reduce the number of conformations it must consider at a lower level of



10

abstraction. Conversely,it can use the detailsof reasoningat a low level of abstractionto

restrict the family of conformationsit acceptsat a higherlevelof abstraction.

InsertFigure6

PROTEAN'sbasic problem-solvingoperation is to apply one or more constraints between

two protein structures, determining where one structure can lie given: (a) its current

hypothesized position; (b) its constraints with the other structure; and (c) the current

hypothesized position of the other structure. PROTEAN curren'dy uses a generate-and-test

procedure to sample space at some level of resolution and to identify all locations in which a

structure satisfies a given set of constraints. Figure 7a schematizes PROTEAN's application of

constraints to position one helix relative to another helix whose position is fixed. Figure 7b

schematizes PROTEAN's application of constraints to restrict further the locations previously

identified for two helices.

Insert Figure 7

PROTEAN applies constraints in the context of one or more partial arrangements (pa).

Each. partial arrangement includes a subset of the structures in a test protein and a subset of

the constraints among those structures. PROTEAN designates one structure as the anchor,

thereby declaring that it has an arbitrary, fixed location. It positions all other structures in the

partial arrangement relative to the anchor. When PROTEAN applies constraints between a

structure and the anchor, we say that it anchors an anchoree to the anchor. When it applies

constraints between a structure that has no constraints with the anchor and some anchoree, we

say that it appends an appendage. Finally, when PROTEAN applies constraints between two

anchorees or appendages to reduce both of their locations, we say that it yokes them,

Insert Figure 8

Because protein analysis entails a combinatoric search, PROTEAN must control its search

intelligently. It must reason about: how to group protein structures in partial solutions; which

structure to designate the anchor of each partial solution; when to perform anchoring,

appending, and yoking operations to apply particular constraints between particular objects;
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when to refine partial solutions at different levels of abstraction; and when to combine

overlapping partial solutions. This reasoning must incorporate general computational principles,

such as: choosing an anchor that has many constraints to many other structures; focusing on

structures that have been restricted to small families; and preferring constraints that maximally

restrict a structure's family. It must also incorporate biochemistry knowledge such as: defining

the space of potentially useful constraints; and characterizing the constraining power of

different constraints.

2.3 Domain Reasoning in BB1

2.3.1 Overview of Domain Reasoning

As indicated above, BB1 systems solve problems through the actions of domain knowledge

sources that contribute solution elements to a shared representation on the blackboard. BB1

provides generic knowledge structures for instantiation as user-specified blackboards and

knowledge sources. Let us consider PROTEAN's solution blackboard and domain knowledge

sources.

2.3.2 Illustrative Domain Knowledge Sources

PROTEAN's solution blackboard has the four levels of abstraction defined above: molecule,

solid, superatom, and atom. Each level specifies a frame that may be instantiated as particular

objects at that level. For example, Figure 9 shows an object at the solid level, helixl.

Insert Figure 9

PROTEAN's current knowledge sources perform the grouping, anchoring, yoking, and

appending actions describe above. Each one instantiates a generic knowledge source frame with

these attributes:

• The trigger specifies a set of event-based predicates. When all trigger predicates are

true, a knowledge source is triggered.

• The context specifies variable-value bindings that distinguish different contexts in

which to perform the action of a triggered knowledge source. A separate KSAR is

created for each such context and placed on the agenda.
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• The precondition specifies a set of state-based predicates. The action of a triggered

knowledge source can be executed only when all precondition predicates are true.

• The obviation condition specifies a set of state-based predicates. If at any time, all

of a KSAR's obviation conditions are true, it is removed from the agenda of

pending KSARs.

• The KS vars specify local variable bindings for the knowledge source action. (The

knowledge source also can specify local variable bindings within each other

attribute.)

• The KS action is a set of rules that, when instantiated and executed, add or modify

information on some blackboard or in the knowledge base.

• Other attributes (e.g., cost, reliability) specify other characteristics of the knowledge

source.

Figure 10 shows an illustrative PROTEAN knowledge source, Yoke-Structures. Figure 10 also

illustrates some of the BB1 blackboard access $functions available to system builders. Figure 11

shows an illustrative Yoke-Structures KSAR. Figure 12 shows an illustrative blackboard event

produced by executing the KSAR shown in Figure 11.

Insert Figure 10

Insert Figure 11

Insert Figure 12
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2.3.3Varietiesof Domain Reasoning in BBI

Like other blackboard systems, BB1 accommodates a variety of inference mechanisms within

the domain reasoning component of a single application system. For example, different

PROTEAN knowledge sources may: reason top-down to hypothesize protein conformations at

the Superatom level that are compatible with hypothesized conformations at the solid level;

reason bottom-up to hypothesize conformations at the solid level that are compatible with

hypotheses at the superatom level; reason within the solid level to hypothesize positions for

secondary structures that are compatible with one another; reason from first principles with its

generate-and-test mechanism; or reason from knowledge by inserting known partial

arrangements into the hypothesized conformation.

2.4 Control Reasoning in BBI

2.4.1 Overview of Control

As indicated above, BB1 provides a uniform blackboard architecture for reasoning about

domain and control problem-solving.

Control knowledge sources incrementally construct a dynamic control plan to guide the

system's behavior. The plan itself is a loosely hierarchical description of classes of actions that

are desirable during different problem-solving time intervals. Since different control knowledge

sources can embody qualitatively different sorts of knowledge, a BB1 system can reason about

control by means of top-down, bottom-up, or opportunistic methods. They may include

application-specific knowledge sources defined by the user, along with various generic control

knowledge sources provided by BB1.

When executed, control knowledge sources add or modify objects on BBI's architecturally

defined control blackboard. In general, decisions at the strategy level prescribe sequences of

subordinate strategies or foci. Decisions at the focus level represent related collections of

heuristics against which KSARs are rated. Decisions at the heuristic level specify individual

functions for rating KSARs.

Like domain knowledge sources, control knowledge sources are triggered by changes to the

blackboard and add KSARs to the agenda where they compete with all other KSARs for

scheduling priority. As a result, a BB1 system incrementally constructs and modifies a dynamic

control plan throughout its problem-solving activities. Depending upon the knowledge available,

the system may systematically elaborate a high-level strategy or reason in a more opportunistic

fashion. The BBI scheduler simply chooses KSARs that satisfy the current control plan.
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The following trace from PROTEAN illustrates the basic elements of BBI's approach to

control reasoning.

2.4.2 An Illustrative Trace of Control Reasoning ......

In the following trace, PROTEAN incrementally elaborates the simple control plan shown in

Figure 13.

Insert Figure 13

The trace begins when a user asks PROTEAN to analyze the lac-repressor headpiece. This

request triggers the knowledge source Post-the-Problem. Since the resulting KSAR is the only

one on the agenda at this time, the scheduler chooses it, creating the Problem description

shown in Figure 14.

Insert Figure 14

The new problem triggers a control knowledge source, Develop-PS-of-Best-Anchor, and a

domain knowledge source, Post-Solid-Anchors. Because PROTEAN has not yet formulated a

control plan, the scheduler uses the defau!t_scheduling rule (pe_ted by convention at the

heuristic level of the control blackboard), which favors control actions. Develop-PS-of-Best-

Anchor generates the corresponding strategy decision, which appears in Figure 13 and, in more

detail, in Figure 15. Two of the strategy's attributes, procedure-type and procedure-data,

specify that PROTEAN desires to perform a sequence of two kinds of actions, first those that

create the best anchor-space and then those that position all secondary structures within that

anchor-space.

Insert Figure 15

The new strategy triggers BBI's generic control knowledge source Initialize-Prescription,

which is shown in Figure 16. Using the strategy's procedure-type and procedure-data attributes,

it determines that "Create-Best-Anchor-Space" should be the new strategy's Current-

Prescription.
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InsertFigure16

The new strategyalso triggersBBl's generic control knowledgesource,Terminate-Decision.

However,Terminate-Decisionspecifiesa precondition that will not be satisfied until the

strategy'sgoal predicates (see Figure 15) are true. Only then will this Terminate-Decision

KSAR appear on the agenda of executable KSARs.

The new Current-Prescription triggers the control knowledge source Create-Best-Anchor-

Space. It creates the corresponding focus decision, which appears in Figure 13 and, in detail, in

Figure 17.

Insert Figure 17

The new focus triggers four control knowledge sources, one for each of the heuristics it

names: Prefer-Activate-Anchor-Space, Prefer-Rigid-Anchors, Prefer-Long-Anchors, and Prefer-

Constraining-Anchors. Each one creates a corresponding heuristic decision, as shown in Figure

13. As illustrated by Prefer-Activate-Anchor-Space, which appears in Figure 18, each heuristic

specifies a function with which to evaluate KSARs.

Insert Figure 18

The new focus decision also triggers BBI's generic control knowledge source, Terminate-

Decision. However, Terminate-Decision specifies a precondition that will not be satisfied until

the new focus decision's goal predicates (see Figure 17) are true. Only then will this Terminate-

Decision KSAR appear on the agenda of executable KSARs,

Now PROTEAN has executed all pending control knowledge sources and elaborated a

complete control plan for the first phase of its strategy for the lac-repressor headpiece. At this

point, there is only one KSAR on the agenda, the one involving the domain knowledge source

Post-Solid-Anchors, which was triggered by the original posting of the lac-repressor problem

above. The schedurer chooses it, creating one object at the solid level representing each of the

seven secondary structures in the lac-repressor headpiece (see, for example, the representation

of helixl in Figure 9).

Each new solid triggers the domain knowledge source Activate-Anchor-Space. Thus, there are
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now seven KSARs on the agenda. PROTEAN uses the heuristics in its current focus to rate the

alternative KSARs. For example, Figure 19 shows that KSAR15 has high ratings against most

of the current heuristics. As a consequence, the scheduler chooses KSAR15, whose action

creates an anchor space with helixl as the anchor.

I_mmm--_Jwtm--mmww

Insert Figure 19

Creation of the anchor space for helixl triggers the domain knowledge source, Add-

Anchoree-to-Anchor-Space. It generates six KSARs, one for each of the other secondary

structures in the protein.

Since creation of the anchor space for helixl also renders the current focus decision's goal

predicates true, it satisfies the precondition of the Terminate-Decision KSAR that was triggered

by that focus. The scheduler chooses that Terminate-Decision KSAR. Its action changes the

status of the focus and each of its subordinate heuristics to "inoperative."

The change in the focus decision's status triggers BBI's generic control knowledge source

Update-Prescription and it is chosen by the scheduler. Using the strategy's procedure-type and

procedure-data (see Figure 15), Update-Prescription determines that Create-Best-Anchor-Space

is now the strategy's expired-prescription, while Position-All-Structures is its new Current-

Prescription.

The new Current-Prescription triggers the control knowledge source Position-All-Structures.

The scheduler chooses it and its action creates a new focus, Develop-PS-of-Helixl, which

appears in Figure 13 and, in detail, in Figure 20.

Insert Figure 20

The new focus triggers seven control knowledge sources, one for each of the heuristics it

names: Prefer-Strategically-Selected-Anchor, Prefer-Rigid-Anchorees, Prefer-Long-Anchorees,

Prefer-Constrai ning-Anchorees, Prefer-Constrained-Anchorees, Prefer-Strong-Constraints,

Prefer-Anchoring-over-Yoking. The scheduler chooses to execute each one, thereby creating

corresponding heuristics.

The new focus also triggers BBI's generic control knowledge source, Terminate-Decision.

Again, Terminate-Decision specifies a precondition that will not be satisfied until the new
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focus decision's goal predicates are true. Only then will this Terminate-Decision KSAR appear

on the agenda of executable KSARs.

Now PROTEAN has executed all pending control knowledge sources and elaborated a

complete control plan for the second phase of its strategy for the lac-repressor headpiece. At

this point, there are six pending KSARs on the agenda, each of which applies the domain

knowledge source Add-Anchoree-to-Anchor-Space to a different secondary structure in the

protein. As illustrated in Figure 21, PROTEAN now rates each KSAR against the new

heuristics associated with the current focus, but not against any of the heuristics associated with

the previous focus. The scheduler chooses the highest-priority KSAR, KSAR34, whose action

adds helix2 as an anchoree in helixl's anchor space.

Insert Figure 21

The new anchoree triggers the domain .knowledge source Anchor-Helix, which adds several

KSARs to the agenda, one for each constraint between helix2 and helixl. Each of these new

KSARs is rated against the current control heuristics and competes with the pending KSARs

for scheduling priority. The scheduler chooses the highest-priority KSAR, KSAR30, which

adds helix3 as an anchoree in helixl's anchor space.

The new anchoree triggers the domain knowledge source Anchor-Helix again, which adds

KSARs to the agenda for each constraint between helix3 and helixl. Each of these new

KSARs is rated against the current control heuristics and competes with the pending KSARs

for scheduling priority. The scheduler chooses the highest-priority KSAR, KSAR33, which

anchors helix2 to helixl with the constraint NOEl.

In the remainder of the trace, which we omit for brevity, PROTEAN adds the remaining

secondary structures as anchorees in helixl's anchor space and applies constraints among all of

the structures with appropriate anchoring, yoking, and appending operations. The agenda of

pending KSARs grows considerably longer as newly added structures create opportunities for

anchoring and as newly anchored structures create opportunities for yoking and appending. The

BB1 scheduler continues to choose these different actions opportunistically, based on their

combined ratings against PROTEAN's current control heuristics. Eventually, PROTEAN

positions all structures relative to helixl, thereby satisfying the second focus decision's goal. As

a consequence, the associated Terminate-Decision KSAR becomes executable and the scheduler
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choosesit. Terminate-Decisionchanges the status of the second focus and each of its heuristics

to "inoperative." These events satisfy the top-level strategy's goal and its associated Terminate-

Decision becomes executable. The scheduler chooses it and its action changes the strategy's

status to "inoperative." PROTEAN thereby completes its assembly of the lac-repressor

headpiece at the solid level.

2.4.3 Varieties of Control Reasoning in BBI

As this trace illustrates, BB1 enables PROTEAN to perform a kind of hierarchical planning

[16, 15, 46, 37] with two important differences. First, hierarchical planning systems typically

refine selected plans to sequences of specific actions to be performed on specified sequences of

problem-solving cycles. By contrast, a BB1 system can refine selected plans to any desired level

of specificity. Thus, PROTEAN currently refines its plan to a sequence of two action classes,

where each class is characterized by a set of desirable attribute-value relations. PROTEAN

performs the "best" actions in each class during an open-ended problem-solving time interval

that begins when a specified control state oc_;urs and terminates when a specified solution state

is achieved. Second, hierarchical planning systems typically formulate complete plans prior to

beginning plan execution. By contrast, a BBI system can--and generally does--construct its plan

incrementally during plan execution, taking account of the results of previously executed

actions in its reasoning about subsequent plan elements. Thus, PROTEAN does not generate its

second focus until after it has achieved the goal of its first focus. PROTEAN uses the anchor

established during its first focus to specify some of the heuristics under its second focus.

In addition to these extended capabilities for hierarchical planning, a BB1 system can

perform other kinds of control reasoning.

First, since BB1 generates its control plan incrementally and explicitly represents the evolving

control plan on the control blackboard, a system can interrupt, depart from, modify, discard, or

resume construction and execution of a plan in response to the dynamic situation. For

example, PROTEAN could begin implementing the Develop-PS-of-Best-Anchor strategy

illustrated in the trace above, but subsequently determine that it had chosen a suboptimal

anchor. A control knowledge source triggered by this observation could "back up" PROTEAN's

control reasoning to its first focus (Create-PS-of-Best-Anchor), add a new heuristic to exclude

the originally chosen anchor, and then allow PROTEAN to resume its problem-solving

activities in accordance with the modified control plan.

Second, in addition to the top-down inference method underlying skeletal planning, a B81
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systemcan incorporatea variety of other inferencemethods,suchas: (a) bottom-up methods

that hypothesizethe desirability of pending actions not explicitly favored by the current

control plan; (b) goal-directedmethodsthat plan actionswhoseresultswouXdtrigger actions

favored by the current control plan; and (c) opportunistic methods that plan actions whose

results would improve a targetted aspect of the current solution. Taking goal-directed methods

as an example, suppose PROTEAN's control plan favored actions involving the knowledge

source Yoke-Structfires at a time when no such actions appeared on its agenda. A control

knowledge source triggered by this situation could determine that Yoke-Structures is triggered

by modifications to an anchoree's locations and that the knowledge sources Anchor-Helix and

Anchor-Coil produce such modifications. It would record a heuristic favoring actions involving

these knowledge sources.

Finally, a BBI system integrates reasoning about control of all domain and control actions

within a uniform blackboard architecture. Thus, for example, PROTEAN records and

concurrently applies heuristics favoring control actions over domain actions along with its

strategic heuristics favoring particular kinds of domain actions.

All of these capabilities are discussed in more detail and illustrated in [23]. We currently are

evaluating more complex PROTEAN strategies that exploit some of the capabilities for control

reason i ng.

2.5 Explanation in BBI

2.5.1 Overview of Explanation

BBI's explicit representation of a system's control plan provides a database for use in

explaining a system's actions. A system can explain its actions by presenting information from

the description and rationale attributes of selected elements of the control plan. Currently, a

system can respond to two kinds of requests. It responds to the request "explain plan element

p" by presenting the rationale stored with p. It responds to the request "why plan element p" by

presenting the description stored with p's superordinate plan element. The user can make either

request with respect to any element of the control plan at any time during the interaction.

However, a typical interaction proceeds bottom-up through the control plan, with requests for

explanation at each level.
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2.5.2 An Illustrative Explanation

Let us consider, for example, PROTEAN's explanation of its decision to schedule KSAR15 in

the program trace discussed above (see Figure 22). The user asks PROTEAN to explain the

scheduling decision. In response, PROTEAN presents the description stored with each of the

heuristics underlying its scheduling decision. The user recognizes the value of most of the

heuristics, but asks PROTEAN to justify heuristic2. PROTEAN presents heuristic2's rationale

(see Figure 18). Next, the user asks PROTEAN why it is using the entire set of heuristics. In

response, PROTEAN describes their superordinate focus (see Figure 17). The user asks

PROTEAN to explain that focus and PROTEAN presents its rationale. Next, the user asks

PROTEAN why it is using that focus. In response, PROTEAN describes the focus decision's

superordinate strategy (see Figure 13). Finally, the user asks PROTEAN to explain the strategy

and PROTEAN presents its rationale.

Insert Figure 22

2.5.3 Varieties of Explanation in BBI

As this example illustrates, BB1 exploits the structure of its control plan to provide a

strategic explanation of its behavior. That is, it explains why it chooses to perform particular

actions by showing how they fit into its larger plan for solving a problem. When a system has

an elaborate, hierarchical strategy, BB1 uses that hierarchical structure to structure its

explanations.

BB1 currently explains its behavior in terms of the description and rationale attributes of

control decisions. However, there is a substantial amount of additional information available

for explanation. For example, it could explain the goals being addressed by particular control

decisions. It also could explain the triggering conditions that make particular KSARs feasible.

We are currently working to add these kinds of information to BBI's explanations.

BB1 currently supports a demand-driven style of explanation. However, with additional

knowledge, it could support other more intelligent styles of explanation as well. For example,

suppose a domain expert had initiated a PROTEAN run that required application of a

complex, but reliable strategy to a large protein. The expert might go off to other activities and

return periodically to monitor PROTEAN's progress. In this situation, PROTEAN could

provide a satisfactory explanation by simply reporting how far it had progressed in its strategy.
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Alternatively, suppose a system programmer were experimenting with alternative control

strategies to assess their computational requirements. The programmer might request

explanation of many of PROTEAN's chosen actions. Given the frequency of questioning,

PROTEAN might condense explanations that repeat parts of recent preceding explanations. For

example, if it were asked to explain two consecutive actions that were supported by the same

focus and heuristics, PROTEAN might simply observe that the action served the same focus,

without repeating all of the heuristics. Since these different styles of explanation usurp the

user's power to determine what information will be presented, we plan to implement them as

sets of generic explanation knowledge sources that users may or may not choose to incorporate

in particular application system s .

2.6 Learning in BBI

2.6.1 Overview of Learning

BB1 structures the data needed to learn new control strategies. Learning knowledge sources

can observe relationships between KSARs, the events that trigger them, and the events that they

produce. They can observe similarities and differences among competing KSARs and determine

how those KSARs rate against the current control plan and against its constituent heuristics

and Foci. They can exploit known data structures to program new control knowledge sources.

For example, a generic learning knowledge source called MARCK [24] learns a new control

heuristic whenever a domain expert corrects an application system's scheduling decisions. The

following section illustrates MARCK's learning of a new control heuristic for PROTEAN.

2.6.2 An Illustrative Example of Learning

Figure 23 illustrates how MARCK goes about learning the heuristic "Prefer-Anchoring-over-

Yoking." MARCK is triggered when a domain expert overrides PROTEAN's decision to execute

KSAR56 and instructs it to execute KSAR55 instead. MARCK hypothesizes that the expert is

using a control heuristic that distinguishes the two KSARs, but is not included under the

current focus. It assumes further that the target heuristic focuses on some difference between

the two KSARs and sets about identifying that difference. Comparing the two KSARs,

MARCK rules out attributes on which: (a) the two KSARs have identical values; and (b)

current control heuristics favor KSAR55 over KSAR56. If more than one attribute remains,

MARCK must ask the domain expert which is the key attribute. It then draws an appropriate

canonical function from its library, instantiates it for the identified attribute, translates the
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function into an English-languagedescription,and requestsan English-languagerationalefrom

the expert.Finally, MARCK recordsits accumulatedinformation as a new heuristic on the

control blackboardand

PROTEANruns.

programsa new control knowledgesourceto generateit on future

Insert Figure 23

2.6.3 Varieties of Learning in BBI

BB1 provides a rich foundation of data for many different kinds of learning.

First, in addition to MARCK, we are exploring other learning procedures that can operate on

the behavioral data explicated in a BBI system. For example, we are working on a collection

of learning knowledge sources called WATCH [20]. These knowledge sources observe a domain

expert scheduling a system's problem-solving actions and recursively abstract a hierarchy of

control heuristics that capture sequential regularities in the expert's scheduling decisions. Then

they automatically program new control knowledge sources that post and expand the hierarchy

top-down during subsequent problem-solving episodes.

Second, these and other learning procedures can be applied to BBI's explicit representations

of events, actions, states, and facts, and to the various relationships among them. For example,

a learning knowledge source could monitor the events produced by a particular knowledge

source and, depending upon whether they typically contributed to accurate solutions, it could

adjust the knowledge sources estimated reliability. Another knowledge could operate in a

similar fashion to adjust a knowledge source's estimated cost.

2.7 Features of the BBI Architecture

In summary, BB1 has several noteworthy features as an architecture for intelligent systems:

1. It provides a general blackboard mechanism for problem solving.

2. It supports three fundamental varieties of reasoning about action: control,

explanation, and learning.

3. It provides a rich foundation and flexible capabilities for reasoning in each

category.
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4. Its basic three-step cycle is simple and transparent.

5. It can incorporate user-specified knowledge sources to expand and improve upon its

current capabilities.

Thus, BB1 is a general architecture for intelligent systems that attack a variety of problem

classes, with a variety of problem-solving methods, in a variety of subject-matter domains.
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3. An Illustrative Framework: ACCORD

3.1 Overview of the Arrangement-Assembly Task

As discussed in section 1, a framework defines the actions, events, states, and facts involved

in solving a particular class of problems by means of a particular method, but independent of

subject-matter domain. For example, we have abstracted and extended the arrangement-

assembly framework implicit in the original PROTEAN implementation and implemented it as

the ACCORD knowledge base.

The protein-structure analysis problem that PROTEAN solves exemplifies a class of

arrangement problems. These problems require the problem-solver to arrange a set of symbolic

objects in some context to satisfy a set of constraints. PROTEAN works in the domain of

protein chemistry. It must arrange protein structures, such as helices and random coils, in the

three-dimensional physical space of the protein molecule. However, arrangement problems also

arise in a variety of other domains, such as furniture arrangement, travel planning, and task

scheduling.

In principle, a problem solver could use any of several different methods to solve a given

arrangement problem. Table 3 lists a few of these methods. In practice, however, the problem

solver may not have the knowledge necessary to apply particular methods to particular

problems. For example, PROTEAN cannot apply the selection, refinement, modification, or

generation methods because it does not have knowledge of alternative protein structures, a

prototypical protein structure, almost-correct protein structures, or an algorithm for generating

complete protein structures. Therefore, PROTEAN constructs hypothetical protein structures by

means of the assembly method discussed in this paper. Unlike the other methods in Table 3,

the assembly method ca...._nnbe applied to any arrangement problem. As we show later in the

paper, ACCORD is an appropriate framework for systems that assemble arrangements in a

variety of subject-matter domains.

Insert Table 3

The following sections describe the knowledge content and representational conventions of

BB1 frameworks in general and of ACCORD in particular: (a) the conceptual network that

organizes all framework level knowledge; (b) types of domain entities; (c) role types for

solution elements; (d) types of actions, events, and states; (e) characteristic relations among
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actions,events,andstates;(f) linguistic templatesfor actions,events,and states;(g) the partial

matchesamongtemplates;and (h) translationsof frameworktemplatesinto BB1templates.The

final section below describes the BB1 framework-interpreter--a collection of generic

procedures for operating on framework knowledge structures.

3.2 The Conceptual Network

We repr6sent all of the knowledge in a framework within a conceptual network ['48]. As

illustrated in Figure 24, the network distinguishes three kinds of concepts: types, individuals,

and instances.

Concept types intensionally define the generic concepts that figure in a task by means of is-

a links. Role types define the roles played by entities in solutions within a particular task. For

ACCORD, these are the arrangement-roles played by the objects involved in arrangement-

assembly tasks. Natural types define the actions, events, and states that figure in a task. For

ACCORD, these are assembly actions, events, and states. Natural types may also specify task-

specific concept types with which to define task-relevant domain entities. For ACCORD, these

are the concept types: object, constraint, and context. Each of these concept types is discussed

in detail below.

Concept individuals exemplify particular concept types. Concept instances instantiate

particular individuals and play particular roles in particular contexts. The network may specify

additional relations among concepts. For example, one concept may include a number of

constituent objects. These and all other links in the network have corresponding inverse links:

can-be-a, is-exemplified-by, is-instantiated-by, is-played-by, and is-included-by. (In Figure

24, and elsewhere in the paper, we use I-bracketed] link names to indicate legal links between

kinds of entities and unbracketed link names to indicate actual links between actual entities).

Insert Figure 24

The distinction among concept types, individuals, and instances corresponds roughly to the

distinction among the generic concepts of a domain or task (e.g., a helix), the specific objects

involved in a particular problem (e.g., helixl, the first helix in the primary sequence of the

lac-repressor headpiece), and instances of those objects involved in particular hypothetical

solutions to the problem (e.g., helixl-1, that is, helixl in its role as anchor of partial

arrangement pal). For example, Figure 24 expresses these and other PROTEAN facts:
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Helix1-1 is-a instance.
Helix1-1 plays anchor.
Anchor is-a role type.
Helix1-1 instantiates helix1.
Helix1 is-a individual.
Helix1 includes amino-acid35.
Helix1 exemplifies helix.
Helix ls-a secondary-structure.
Secondary-structure is-a object.
Object Is-a natural type.

An implicit $is-a relation holds between any two concepts related by a chain of instantiates,

exemplifies, and is-a links. For example, we may infer that:

Helixl-1 $is-a secondary-structure.

because:

Helix1-1 instantiates helix1.

Helix1 exemplifies helix.
Helix is-a Secondary-Structure.

Similarly, a $inclu.des relation holds between concepts related by a chain of instantiates,

exemplifies, is-a, and includes links. For example, we may infer that:

beca use:

Helix1-1 $includes Amino-Acid35.

Helix1-1 instantiates helix1.
Helix1 includes Amino-Acid35.

A Splays relationholds between concepts relatedby a chain of exemplified-by,instantiated-by,

and plays links. For example, we may infer that:

Helix Splays anchor.

because:

Helix is-exemplified-by helix1.
Helixl is-instantiated-by helix1-1.
Helix1-1 plays anchor.

These and all other $(link> relations have corresponding inve_e relations that hold between

corresponding chains of inverse component relations. For example, we may infer that:

Anchor Sis-played-by helix,

because:

Anchor is-played-by helix1-%
helixl-I instantiates helix1.
helix1 exemplifies helix.

Any concept in the network may specify particular attributes, along with static or procedural

values. For example, PROTEAN's concept network includes the facts that: helix has an attribute

called shape, whose value is cylinder; and secondary-structure has an attribute called length,

whose value is determined by a procedure called Number-of-AA that counts the number of
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amino-acids included by the secondary-structure. Like relations among concepts, these

attributes are inheritable. For example,helixl-l's shape is cylinder and its length is

determinedby the procedureNumber-of-AA.

One classof attributes warrants special mention. Modifiers are attributes whose procedural

attachments evaluate the applicability of the named descriptors to any given concept

individuals or instances. For example, PROTEAN's modifier long is an attribute of the concept

type secondary-structure. Its value, which is computed by the procedure called How-Long-Is, is

a function of the number of amino-acids included by a particular secondary-structure (that is,

by a particular alpha-helix, beta-sheet, or random-coil). All such procedures return numerical

values scaled 0-100, where 0 signifies minimal applicability of the modifier and 100 signifies

maximal applicability. However, a framework can distinguish two different procedural

definitions for each modifier.

Threshold procedures evaluate concepts in an all-or-none fashion, For example, PROTEAN

might refer to a "long helix," meaning "a helix that has at least 15 amino acids." An individual

helix, say helixl, either matches this description or it does not. Therefore, the threshold

procedure attached to the attribute long returns a value of 100 for any helix that includes more

than 15 amino acids and a value of 0 for any helix that includes fewer than 15 amino acids.

In general, threshold procedures return a value of 100 or 0, depending upon whether or not the

modified concept exceeds a designated threshold on a designated attribute.

Scale procedures evaluate concepts in a graded fashion. For example, PROTEAN might refer

to a "long helix," meaning "a helix that includes at least 15 amino acids is better than one that

includes 10-14 amino acids, which is better than one that includes fewer than 10 amino acids."

An individual helix, say helixl, matches this description to some degree. Therefore, the scale

procedure attached to the attribute long returns a value of 100 for any helix that includes more

than 15 amino acids, a value of 50 for any that includes 10-14 amino acids, and a value of 0

for any helix that includes fewer than 10 amino acids. In general, scale modifiers return values

somewhere in the range 0-100, depending upon the degree

exhibits a designated attribute.

to which the modified concept

Threshold or scale procedures may be specified within an expression by extending the

modifier name with " T" or -.- " S" However, as discussed below, BB] knows in which

circumstances each type of procedure typically applies. If no extension appears in a modifer,

it uses the appropriate procedure.
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3.3 Types of Domain Entities

A framework provides skeletal branches of the natural-type hierarchy in which to define

relevant domain entities.

For the arrangement-assembly tasL ACCORD provides skeletal branches for: the objects to

be arranged, the context in which the objects must be arranged, and the constraints that must

be satisfied within the arrangement. Particular constraints may involve particular objects and

constraints. Figure 25 illustrates how PROTEAN instantiates these skeletal branches with

biochemistry entities. In addition, PROTEAN specifies the characteristic attributes of and

relations among entities. For example, it specifies that alpha-helix, beta-sheet and random coil

have the attribute shape, with the values cylinder, prism, and sphere, respectively.

Insert Figure 25.

3.4 Role Types

A framework defines the roles that problem entities can play in hypothetical solutions.

ACCORD defines the arrangement roles illustrated in Figure 26. An arrangement is a

potential complete solution to an arrangement problem, that comprises one or mote partial-

arrangements thzt, together, comprise a criterial subset of its ol)jects, constraints, and context. A

partial-arrangement is a partial solution to a problem, that comprises a non-criterial subset of

its objects, constraints, and context. An included-object is one of the objects from the problem

that has been selected for inclusion in a partial-arrangement. Included-object has three

subordinate subtypes. An anchor is an included-objects that has been assigned a fixed location

to define the local context of a partial arrangement. An anchoree is an included-objects that

has at least one constraint with the anchor. An appendage is an included-objects that has at

least one constraint with at least one anchoree. 4

Figure 26 also illustrates characteristic relat!ons among solution elements that play particular

roles. An arrangement includes partial-arrangements, which, in turn, include Included-objects.

Anchors anchor anchorees. Anchorees may append appendages. Two included-objects may yoke

4We have not yet found it necessary to elaborate similar role types for constraints and contexts, but we may do so

in the future.
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one another. Three or more included-objects may consolidate with one another. A partial-

arrangement may incorporate, merge, or dock another one.

Finally, ACCORD specifies a number of characteristic attributes and default values for

solution elements that play particular roles (not shown in Figure 26). For example, included-

object has a locations attribute, whose default value is Nil, that specifies its legal locations in

its partial-arrangement context, given the constraints that have been applied at any point in

time. Included-object also has an attribute named secure whose value is a procedure for rating

(0-100) the degree to which an included-object's current locations have been restricted.

3.5 Types of Actions, Events, and States

A framework defines task-specific action, event, and state types as homologous variations on

an underlying network of root verbs.

u....m ..........

Insert Figure 27

ACCORD defines the type hierarchy of root verbs shown in Figure 27. The top-level verb,

assemble, means: solve an arrangement problem by means of the assembly method. Assemble

has four subtypes. Define means: construct a partial arrangement that includes particular

objects in 9articular roles. Position means: identify the locations in which particular objects can

lie within a particular partial arrangement while satisfying particular constraints. Coordinate

means: identify the locations in which particular objects can lie within a partial arrangement

while satisfying their part-whole relations with previously positioned superordinate or

subordinate objects. Integrate means: combine two partial arrangements to form a single, larger

partial arangement. Each of the four verb subtypes--define, position, coordinate, and

integrate--has two or more subordinate subtypes, as described below.

Define has three sub-types. Create means: record a blackboard objects representing a new

partial arrangement. Include means: create instances of particular objects or constraints within

a particular partial arrangement. Orient means: declare that a particular objects in a partial

arrangement is the anchor and assign the roles anchoree and appendage to other included

objects depending upon whether or not they have constraints with the anchor.

Position has five subtypes. Anchor means: identify the locations in which an anchoree

satisfies particular constraints with the anchor. Append means: identify the locations in which
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an appendagesatisfies constraintswith an anchoreeor appendagethat has already been

positioned.Yoke means: prune the locations for two included-objects that have already been

positioned so that they include only locations in which the two objects satisfy constraints with

one another. Restrict means: prune the locations identified for an anchoree or appendage to

include only those that satisfy additional constraints. Consolidate means: prune the locations

for three or more objects to include only those that satisfy all constraints among the objects

simultaneously.

Coordinate has two subtypes. Refine means: identify locations for a previously positioned

objects's constituent objects so as to satisfy their part-whole relationship. Adjust means:

identify an objects's locations to satisfy its part-whole relationship with previously positioned

constituent objects.

Integrate has tbree subtypes. Merge means: combine two partial arrangements that have the

same anchor. Incorporate means: combine two partial arrangements that include anchorees or

appendages. Dock means: combine two partial arrangements that have no common objects, but

include objects that constrain one another.

ACCORD also specifies entailments of these root verbs (see Figure 28). For example, the

anchor verb entails the generate verb, which means: generate a family for an included-object.

Similarly, the position verb entails the applT verb, which means: apply a constraint to an

included-object within a partial arrangement. An implicit $entails relation holds between two

concepts related by any chain of is-a, exemplifies, instantiates, and entails links. For example,

we may infer that:

Anchor $entails apply.

because:

Anchor is-a Position.
Position entails apply.

Conversely, we may infer that:

Apply Sis-entailed-by anchor.

because:

Apply Is-entailed-by position.
Position can-be-a anchor.

A framework distinguishes homologous type hierarchies for actions, events, and states by

different verb tenses: Do-verb signifies an action. Did-verb signifies an event, ls-verbed

signifies a state. As illustrated in Figure 28, all relations and attributes in the root verb

hierarchy reappear in the action, event, and state type hierarchies. A framework also recognizes
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implicit statesreflecting the existing propertiesof particular concepts (e.g., Has helix2 shape

cylinder) and the relationships between them (e.g., Exemplifies helix1 helix). As a consequence,

the number of recognizable state types in an application greatly exceeds the number of action

and event types. For reasons of efficiency, a framework does not explicitly enumerate all such

states, but only those that have important relationships (e.g., is-caused-by, is-entailed-by) to

actions, events, or states in the type hierarchy. Nonetheless, it supports verification and

assessment of all explicit and implicit states in the conceptual network.

Insert Figure 28)

3.6 Relations among Actions, Events, and States

A framework specifies legal relations among different types of actions, events, and

states [1, 36]. Events of a particular type can trigger actions of a particular type, that is,

indicate that the actions are potentially feasible. States of a particular type can enable triggered

actions of a particular type, that is, render the triggered actions feasible. Actions of a

particular type can cause events of a particular type. Finally, events of a particular type can

promote states of a particular type. Figure 29 illustrates some of the legal relations specified in

the ACCORD knowledge base.

Insert Figure 29

An implicit $(links) form of each of these relations:

A [$<links>] B

holds for any two concepts,a and b, whenever:

a $is-a A or a Sentails A.
and

B $is-a b or B $entails b.

For example, we may inferfrom Figure 29 that:

Did-anchor [$triggers] do-yoke.

because:

Did-anchor is-a did-position.
Did-position [triggers] do-yoke.

Similarly, we may infer that:

Do-yoke [$causes] did-apply.

because:
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Do-yoke Ccauses] d'id-yoke.
Did-yoke $entails did-apply.

_ _

Note that legal relations such as those specified in Figure 29 may not actually hold among all

individual actions, events, and states of the specified types. For example, a did-position event

can trigger a do-yoke action. But an individual did-position event may require additional

attributes (discussed below) in order to trigger an individual do-yoke action.

3.7 Linguistic Templates for Actions, Events, and States

A framework provides linguistic temp[ates for all root verbs and their entailments. Each

template comprises a verb keyword, followed by a specified sequence of formal parameters,

interspersed with optional conjunctions and prepositions (noise words). Particular actions,

events, or states are represented as patterns that instantiate the formal parameters of particular

templates with particular concept types, individuals, or instances. In addition, each keyword and

formal parameter value in a pattern may be preceded by any number of modifiers and

followed by a local variable name in parentheses.

Table 4 shows ACCORD's templates for the arrangement-assembly root verbs. (For brevity,

we omit ACCORD's templates for entailed verbs.) For example, the anchor template is:

Anchor anchoree to anchor in pa with constraint.

Here the keyword, anchor, is followed by the sequence of formal parameters: anchoree,

anchor, pa, constraint, with some _arameters preceded by the declared noise words: to, in, with.

A system instantiates these templates with domain-specific entities to form particular action,

event, and state patterns. For example, PROTEAN might instantiate the anchor template as this

action pattern:

Do-anchor helix2-1 to helixl-1 in pal with NOEl.

PROTEAN could represent a larger class of actions with this pattern:

Do-anchor helix to helixl-i in pal wlth constraints.

It could represent a restricted class of actions by inserting modifiers before some parameter

values, as in this pattern:

Quickly do-anchor long helix to helix1-1 In pal with strong constraints.

PROTEAN could instantiate event and state patterns in a similar fashion by substituting the

appropriate did-verb or is-verbed forms of the root verbs.

Insert Table 4
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3.8 Partial Matches Among Templates

A framework defines the potential partial matches among action, event, and state patterns by

identifying corresponding parameters in their underlying templates. (These correspondences

need not be one-to-one.) Two patterns match tothe degree that the values of their

corresponding parameters match. For example, Figure 30 identifies corresponding parameters in

the assemble, position, and anchor template.

Insert Figure 30

Consider the position and anchor templates. By definition, the two keywords, position and

anchor, correspond. In this context, the formal parameters included-object and anchoree

correspond because they both represent objects that the actions position. The two formal

parameters called pa correspond because they both represent the partial arrangement in which

the actions occur. The two formal parameters called constraints correspond because they both

represent constraints that the actions apply. The anchor template's formal parameter called

anchor does not correspond to anything in the position template because the position template

does not specify an ot_ject that lies at the center of the designated local coordinate system.

Given this knowledge, a system can assess the degree to which two patterns match by

assessing the matches between their formal parameter values.- For example, PROTEAN can

assess the degree to which the pattern:

Anchor helix2-1 to helix1-1 in pal with NOEl.

matches the pattern:

Position long helix in pal with strong constraint.

by assessingthe matches of:

anchor against position;
helix2-! against long helix;
pal against pal;
NOEl against strong constraint.

3.9 Framework-BB1 Template Translations

Since a framework exists in the context of the BB1 architecture, it provides the knowledge

necessary to translate certain framework templates into semantically equivalent BB1 templates

and vice versa. So far, we have found it necessary to provide such knowledge for terminal

action patterns and for all state patterns. In both cases, translation knowledge comprises the

parameterized framework templates and the corresponding parameterized BB1 templates, with
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corresponding parameters of the same names. Thus, BB1 can translate patterns between

representations by means of a variable-substitution procedure discussed below.

For example, Figure 31 Shows the BB1 template for the do-anchor action. As this example

illustrates, each BB1 action template is a parameterized program of rules that evaluate lisp

expressions, set local variables, and modify objects On the blackboard or in the knowledge base.

(Note that all application-specific routines for constraint satisfaction are inserted indirectly

through calls to ACCORD's generic CSS-(extension) functions.) Both do-anchor templates

refer to the parameters: anchoree, anchor, pa, and constraints.

Insert Figure 31

Figure 32 shows the BB1 template for the is-anchored state. As this example illustrates, each

BB1 state template is a parameterized program of blackboard access functions. Both is-anchored

templates refer to the parameters: anchoree, anchor, pa, constraints.

Insert Figure 32

In addition to these explicitly stored state translations, BB1 automatically translates any has-

attribute state pattern instantiating the prototypical framework template:

Has object attribute value

into the equivalent prototypical BB1 template:

(Equal ($Value object attribute) value).

3.10 The BBI Framework-Interpreter

We have extended BB1 with a framework-interpreter: a collection of procedures for parsing

patterns, matching patterns, quantifying the match between two patterns, generating an ordered

list of quantified instantiations of a pattern, and translating framework patterns into BB1

patterns. In all cases where these procedures apply, 881 can use either the new procedures or

its standard procedures (applicable to BB1 knowledge structures), as appropriate. The BB1

framework-interpreter applies to any user-specified framework defined with the BB1 knowledge

structures illustrated above for ACCORD.
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3.10.1 Parsing Patterns

The BB1 parser converts patterns from their English form to a parsed form for use by the

matcher, quantifier, generator, and translator. The parser first removes noise words

(conjunctions and prepositions) from a pattern. It then works left to right, using recognized

verb keywords and the sequence of parameters in their associated templates to identify the

pattern's constituent phrases. The parser produces a list of simple lists, each of which contains

a single parameter value and the modifiers that precede it in the pattern. For example, the

parser would parse the pattern:

Quickly do-anchor long helix to helixl-i in pal
with strong constraint,

as the list:

((do-anchor Quickly)
helix long)
helix!-l)
pal)
constraint strong))

Other interpretationproceduresaccessparticularparameter phrasesaccording to theirsequential

positions in the templates and parsed lists.

3.10.2 Matching Patterns

The BB1 matcher assesses whether a test pattern matches a target pattern. For each

corresponding parameter in the two patterns, the matcher declares a match whenever the test

pattern value has a Sis-a, $entails, or Splays relation with the target pattern value. A perfect

match is one in which the matcher declares a match for all parameters (verbs and nouns) in

the target pattern. However, the marcher uses the partial-match knowledge described above to

assess the partial match between any two patterns, regardless of the number of corresponding

parameters between them. Figure 33a illustrates a perfect match between two PROTEAN action

patterns.

Insert Figure 33

3.10.3 Quantifing a Match

The BB1 quantifier records a numerical assessment of the match between each parameter

value in a test pattern and: (a) its corresponding parameter value in a target pattern; and (b)

each modifier of the corresponding parameter value in the target pattern. It records 0 for each

non-matching parameter value and 100 for each matching parameter value. For non-matching
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parameters,the quantifier alsorecords0 for each modifier of the parameter value in the target

pattern. For matching parameter values, it records for each modifier a number between 0 and

100, which it obtains from the attribute named by the modifier. A perfect quantified match is

one in which the test pattern receives a value of 100 for all parameters in the target pattern

and their associated modifiers. Again, however, the quantifier numerically assesses the degree of

match between any tw_._?patterns regardless of the number of corresponding parameters. Figure

33b illustrates a quantified match between two PROTEAN action patterns.

As discussed above, modifiers may specify threshold Or scale procedures with the extensions

"-T" or "-S" to the modifier aame. Howeyer, BB! knows in which circumstances threshold and

scale procedures typically apply and uses the appropriate one if no extension appears in the

named modifier. For example, BB1 uses threshold procedures to quantify matches underlying its

all-or-none triggering decisions and scale procedures to quantify matches underlying its graded

ratings of pending KSARs.

3.10.4 Generating an Ordered l,ist of Quantified Matches

The BB1 generator generates all (or a specified number of) values for a designated parameter

that legally instantiate a set of patterns or phrases. The generator first follows links in the

concept network to find values that match parameter values and associated threshold modifiers

and relations specified in the input patterns. It then rates each value against associated scale

modifiers in the input patterns. It returns all values and their ratings, "best first." For example,

Figure 34 illustrates generation of all long helices that are positioned in some partial

arrangement.

Insert F!gure 34

3.10.5 Translating Between Framework and BBI patterns

The BBI translator uses a variable-substitution procedure to translate framework and BB1

patterns into one another. For example, Figure 35 illustrates the translation of an ACCORD

pattern for the do-anchor action into the semantically equivalent BB1 action pattern.

Insert Figure 35
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4. Reasoning within the BB* Environment

In this section, we show how a framework such as ACCORD enhances the representation and

performance of a BB1 application system such as PROTEAN.

4.1 Domain Reasoning in BB*

4.1.1 Domain Knowledge Sources: Representation and Computation

Given a framework, a domain knowledge source can represent each of its main components--

trigger, context, precondition, obviation condition, and action--as event, state, and action

patterns that exemplify particular event, state, or action types. For example, Figure 36 shows

the ACCORD representation of PROTEAN's knowledge source Yoke-Structures (see Figure 10).

Given this representation, BBI can exploit its framework-interpretation procedures during

knowledge source invocation and execution. The following sections discuss the representation

and processing of these knowledge source components: trigger, context, precondition, action, and

result.

Insert Figure 36

4.1.2 Knowledge Source Trigger

A knowledge-source trigger comprises one or more event patterns. BBI triggers a knowledge

source for a given blackboard event if it assesses a perfect quantified match of the blackboard

event against each of the knowledge source trigger's event patterns. At the same time, it binds

the value of each parameter in the trigger patterns to the specified local variable name (or, if

none is specified, to an internally generated name).

For example, Yoke-Structures's trigger comprises one did-restrict event pattern:

Did-restrict included-object (yokee) in any-pa (the-pa).

Suppose the following blackboard event occurred:

Did-anchor helix2-1 to helixl-I in pal with NOEl.

This event produces a perfect quantified match to Yoke-Structures's trigger pattern because:

Did-anchor $entails did-restrict.
Helix2-1 Splays inc]uded-object.
Pal $is-a pa.

Therefore, BB1 would trigger Yoke-Structures and bind the two local variables: yokee to

helix2-1 and the-pa to pal.
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4.1.3 Knowledge Source context

A knowledge-source context comprises a nested set of expressions of the form:

For <variable> in <state patterns>.

For each such expression, BB1 generates and identifies as a context each unique combination of

variable-value pairs that match the pattern. If several such expressions are nested, BB1 applies

this procedure recursively. It generates a KSAR for each identified context and places all

generated KSARs on the agenda.

For example, Yoke-Structures's context comprises two expressions:

For partner in:
Inc]udes the-pa partner.
Not Is yokee partner.

For constraint in:
Involves constraint yokee.
Involves constraint partner.

Let us continue the example begun above. Based on the first expression, BBI generates

alternative values of the context variable, partner: all objects that are included by pal (the-pa),

excluding helix2-1 (yokee). Supposing that pal includes one such object, BI31 generates one

value of partner: helix3-1. Based on the second expression, BB1 generates for each value of

partner alternative values of the context variable, constraint: all constraints that involve

helix3-1 (partner) and helix2-1 (yokee). Supposing that two such constraints exist, BB1

generates two values for constraint: NOE6 and NOE8. Finally, BB1 generates a unique context

representing each combination of context-variable values andgenerates a separate KSAR for

each context, for example KSAR 50 in Figure 37. (Figure 11 shows the same KSAR represented

in BB1 knowledge structures).

Insert Figure 37

4.1.4 Knowledge Source precondition

A knowledge-source precondition comprises any number of state patterns that must match

information on the blackboard or in the knowledge base before the KSAR can execute its

action. For each KSAR, BB] translates and evaluates each precondition pattern, performing

specified variable bindings along the way. If all preconditions evaluate to true, BB1 places the

KSAR on the agenda of executable actions. If any do not evaluate to true, BB1 places the

KSAR on the agenda of triggered actions and rechecks unsatisfied preconditions on each cycle

until all are true.
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For example, Yoke-Structures's precondition:

Has partner locations.

specifies that Yoke-Structures can execute its action only when

partner has an attribute named locations whose value is not nil.

translates this pattern into the BB1 pattern:

($Value helix3-1 locations)

and evaluates it. If it evaluates to true, BB1 determines that KSAR1 is executable.

the previously identified

For KSARS0 above, BB1

4.1.5 Knowledge Source Action

A knowledge-source action is a terminal action pattern whose parameters are bound within a

KSAR during the triggering, context-matching, and precondition-evaluation procedures

described above. When BB1 decides to execute a particular KSAR, it translates the action

pattern into the equivalent BB1 action and sends it to BBI's low-level action interpreter.

For example, KSAR50 specifies the action pattern:

Do-yoke helix2-1 with helix3-1 in pal with csetl.

BBI translates this pattern into the equivalent BB1 action pattern (illustrated in Figure 35) and

sends it to the low-level action interpreter for execution.

4.1.6 Knowledge Source Result

A knowledge source result is a terminal eveni pattern that corresponds exactly to the

knowledge source action pattern. Within a KSAR, corresponding parameters in the action

pattern and result pattern have identical values. When BB1 executes the action of the KSAR,

it generates the event pattern and records it on its internal event list for use during knowledge

source triggering.

For example, in executing KSARS0, BB1 generates the event pattern:

Did-yoke helix2-1 with helix3-1 in pal with csetl.

(Figure 12 shows the same event representedin BBI knowledge structures.)

4.1.7 Advantages for Domain Reasoning

As these examples illustrate, a framework such as ACCORD improves domain knowledge

sources and domain reasoning in several ways:

1. There is a clean distinction between domain-specific conceptual knowledge and

task-specific problem-solving actions.
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2. Domain knowledgesourcesand KSARsareshorter,simpler, more perspicuous,and

more machine-interpretablethan they are when expressedin the standard BB1

knowledgestructures.

3. It is easierto programdomainknowledgesourcesin the English-like languageof a

frameworkthan to programthemin Lisp expressions.

4. The well-structureddeclarativerepresentati0nof action, event, and state types
previdesa natural discriminationnetworkfor efficient triggering,context binding,

and preconditionmatchingprocedures.

4.2 Control Reasoning in BB*

We discuss the following aspects of control reasoning: specification of control knowledge

sources, representation of focus decisions, rating KSARs against focus decisions, representation

of of abstract control plans, and reasoning about control plans. We summarize the advantages

of using a framework for all aspects of control reasoning at the end of the section.

4.2.1 Control Knowledge Sources: Representation and Computation

A framework permits control knowledge sources to represent their main components in terms

of event, state, and action patterns. For example, Figure 38 shows the control knowledge source:

Append-to-Secure-Anchorees.

Insert Figure 38

Control knowledge sources undergo the same invocation procedures described above for

domain knowledge sources. For example, the event:

Did-anchor helix2-1 to helix!-I in pal with NOEl.

in which helix2-1 was restricted to a criterially small number of locations would produce

KSAR51, shown in Figure 39. When exe_:u(ed, the KSAR would record a new focus with the

specified attributes.

Insert Figure 39
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4.2.2 Representing Focus Decisions

As discussed in section 2 above, a focus decision identifies a class of actions that are

desirable during designated time intervals. It has two key computational attributes: A

prescription defines a desirable class of actions. A goal defines a termination condition for the

focus. Given a framework such as ACCORD, a system can represent the prescriptions and goals

of its focus decisions as instantiated action, event, and state patterns.

For example, if the Append-to-Secure-Anchorees KSAR in Figure 39 above, were executed, it

would produce the focus decision shown in Figure 40. Notice that the prescription of this

focus:

Perform:
Do-append appendage to helix2-1 in pal with constraint.

captures the meaning of several heuristics as represented in standard BB1 knowledge structures:

Prefer KSARs that execute append actions.
Prefer KSARs that operate on appendages.
Prefer KSARs that position something relative to helix2-1.
Prefer KSARs that operate in the context of pal.
Prefer KSARs that apply constraints.

Similarly, although the goal in this example represents a single blackboard access function, the

goals of other focus decisions could capture the meaning of a program of such functions.

Insert Figure 40

More generally, a focus prescription can specify desirable actions in terms of the actions

themselves, the events that trigger them, the states that enable them, the events they cause, or

the states they promote. Table 5 shows examples of these other kinds of prescriptions.

Similarly, a focus goal can specify desirable conditions in terms of any state of the knowledge

base or any blackboard. Table 6 shows examples of other kinds of goals. This flexibility

supports the integration of different inference methods (e.g., data-driven, goal-driven). More

importantly, it articulates the semantics of these methods in the context of control planning.

Insert Table 5

Insert Table 6
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4.2.3RatingFeasibleActions

Given a framework, a system can rate alternative feasible actions (pending KSARs) against

desirable actions (current focus decisions) by means of the quantified match procedure

discussed in section 3. It rates each parameter value in the KSAR against each corresponding

parameter value and modifier in a focus decision. It combines these component ratings

according to some integration function (either one specified in that particular focus or a

default function) to produce a rating against the entire focus decision. Figure 33 above shows

an example in which the KSAR action:

Do-anchor helix3-1 to helix1-1 in pal with NOE27.

is rated against the focus decision:

Perform:
Do-position helix3-1 in pal with strong constraint.

4.2.4 Representing Abstract Control Plans

As discussed in section 2, abstract contro_l plans result from a system's reasoning about

general strategies encompassing variable problem-solving time intervals. Strategy decisions at

one level of abstraction prescribe sequences of subordinate strategy decisions at lower levels.

All control plans terminate in a sequence of focus decisions that the BB1 scheduler uses to rate

pending KSARs.

Given a framework such as ACCORD, a system can represent a strategy's description and

goal attributes as action, event, and state patterns, similar to those discussed above for focus

decisions. Thus, strategy descriptions can specify desirable actions in terms of the actions

themselves, the events that trigger them, the states that enable them, the events they cause, or

the states they produce. Similarly, strategy goals can specify termination conditions in terms of

any state of the knowledge base or blackboards. For example, Figure 41 shows the PROTEAN

control plan from Figure 13 as represented in ACCORD knowledge structures. Figure 42 shows

an excerpt from one of the more complex control plans we currently are evaluating. (Both of

these figures show only the description attributes of component decisions.)

As these figures illustrate, the ACCORD representation clearly shows how each decision

summarizes and prescribes its subordinates. In Figure 42, for example, the second sub-strategy

decision:

Perform:

Quickly do-position _ constraining secondary-structure
(target-object) in pa2 with strong constraints.

summarizes and prescribesitssubordinatesequence of decisions:
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Perform:
Ouickly do-position helix4-2 in pa2

with strong constraints.

Perform:
Quick]y do-position helix6-2 in pa2

with strong constraints.

because helix4-2 is the longest,most constrainingsecondary structurein pa2 and helix6-2 is

the runner-up. Similarly, although it does not appear in Figure 42, the goal of the sub-strategy

decision:

Has target-object few locations.

summarizes and prescribesthe goalof itssubordinatesequence of decisions:

Has helix4-2 few locations.

Has helix6-2 few locations.

Insert Figure 41

Insert Figure 42

4.2.5 Constructing the Control Plan

As discussed in section 2, a BB1 system dynamically contructs its control plan through the

actions of knowledge sources that incrementally record and modify component control

decisions. To support control reasoning, BBI provides a growing repertoire of generic control

knowledge sources that cooperate with application-specific control knowledge sources to

generate control plans. (See, for example, the control knowledge sources Initialize-Prescription,

Update-Prescription, and Terminate-Decision, discussed in section 2.)

A framework provides a richer foundation for generic control knowledge sources. For

example, the control knowledge source called Refine-Parameters refines a strategy decision as a

sequence of subordinate decisions by replacing one of its parameter phrases with legal values,

best first. The strategy decision must specify which parameters to refine as the value of its

attribute procedure-data. If the strategy specifies more than one parameter, Refine-Parameters

applies recursively to each subordinate decision.

For example, although it does not appear in Figure 42, the strategy decision carries these

additional attributes:
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Description:
Quickly do-position long constralntng secondary-structure
in current-best pa with strong constraints.

Procedure-type: Refi ne-Parameters
Procedure-data: (pa included-object)

The attribute procedure-type specifies that Refine-Parameters should refine this strategy. The

attribute procedure-data specifies two parameters to be refined, pa and included-object.

Beginning with the parameter pa, Refine-Parameters generates a subordinate, by replacing the

strategy's phrase, current-best pa, with the best legal value, pal. It also removes the parameter

pa from the subordinate's procedure-data. Moving on to the parameter included-object, Refine-

Parameters generates a subordinate by replacing the phrase, long constraining secondary-

structure, with the best legal value, helix3-1. Again, it removes the parameter included-object

from the subordinate's procedure-data. Since this subordinate's procedure-data has a value of

nil, Refine-parameters declares it to be a focus decision. The scheduler then uses the new

focus to rate pending KSARs until the focus goal (refined from the strategy goal in the same

manner) is satisfied.

When the focus goal is satisfied, Refine-Parameters is again activated. It returns to the focus

decision's superordinate strategy and generates the next focus by replacing the phrase, long

constraining secondary-structure, with the second best legal value, helix4-1. The scheduler uses

the new focus to rate pending KSARs until its goal is satisfied.

When the new focus goal is satsified, Refine-Parameters is again activated. When it

determines that there are no other legal values of the phrase, long constraining secondary-

structure, it returns to the top-level strategyand generates the second subordinate strategy by

replacing its phrase, current-best pa, with the Second best value, pa2. It generates the first and

second focus decisions under this sub-strategy as discussed above for the preceding sub-strategy.

Following BBI's emphasis on flexibility, Refine-Parameters can refine a strategy to an

arbitrary level of detail. If a strategy specifies all of its parameters for refinement, each focus

decision specifies the currently most desirable individual action. However, if a strategy specifies

a subset of its parameters, as illustrated in Figure 43, each focus decision specifies the

currently most desirable clas......Asof actions. In either case, the scheduler rates pending KSARs

against the focus until its goal is satisfied.

As discussed above, BB1 can integrate multiple inference methods (e.g., top-down, bottom-up,

goal-directed, opportunistic) in its reasoning about control plans. Refine-Parameters illustrates

the advantages of using a framework for top-down strategy refinement. Similar advantages

emerge in applying the other kinds of inference methods as well.
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4.2.6 Advantages of Using a Framework for Control Reasoning

A framework provides the following advantages for control reasoning:

• It reinforces BBI's distinction between problem-solving actions and problem-solving

strategies.

• It provides a simple, concise, perspicuous, and interpretable representation of

control knowledge sources, KSARs, control decisions, and control plans.

• It provides a uniform representation for control decisions at all levels of

abstraction.

• It enables individual control decisions to combine multiple heuristics while

preserving their modularity.

• It explicitly and unambiguously articulates task-specific control parameters and the

relationships among them, thereby enforcing a semantically correct mapping

between KSAR attributes and the control heuristics used to rate them.

• It supports coiatrol knowledge sources that implement a variety of inference

procedures (e.g., goal-driven, event-driven) and articulates the semantics of these

different methods in the context of control planning.

• It provides a rich foundation for powerful generic control knowledge sources,

thereby reducing the number of specific knowledge sources required for an

application.

4.3 Explanation in BB*

As discussed in section 2, BB1 currently constructs explanations out of the description

attributes of relevant control decisions and the links among them. Given a framework, these

descriptions represent particular action, event, and state patterns. For example, Figure 43 shows

how PROTEAN would explain its decision to perform KSAR55 based on the control plan

excerpted in Figure 42. As illustrated in this example, a framework enhances the quality of

BBI's explantions in four ways.
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First, a framework providesan orderly and perspicuouslanguageof explanation. The

parametersof framework templates represent key task-specific control parameters that are

instantiated with domain-specific concepts. The hierarchical organization of framework

templates and their domain-specific values correspond to the hierarchical aspects of the

problem-solving process.

Second, a framework provides a structu(ed account of the organization of individual

heuristics within a control decision and the KSAR attributes to which they are applied. For

example, in Figure 43, PROTEAN clearly communicates that "helix6-2" was evaluated against

several heuristics represented by the words: long, constraining, and secondary-structure.

Third, a framework provides these same advantages for explanations of the feasibility of

recommended actions and for the goals of particular control decisions. For example,

PROTEAN might explain that KSAR55 is feasible because:

Did-include helix6-2 in pa2.
Has helixS-2 anchoring constraint.

Similarly, it might explain that it desires to: _

Quickly do-position long constraining secondary-structure
In pa2 with strong constraint.

until it achieves a state in which:

Has paZ status complete.

Fourth, given a framework, each control decision's description serves both as a .lachine-

interpretable representation for control reasoning and as a htiman-interpretable representation

for explanation. We can make a stronger claim that a system explains its behavior in terms of

its own understanding of that behavior.

Insert Figure 43

4.4 Learning in BB*

A system's ability to learn depends upon several factors, including the following: (a) the

power of the system's learning procedures; (b) the quality of the data to which it applies those

procedures; and (c) the depth and organization of the system's knowledge about relevant

concepts. A framework improves each of these factors. As a consequence, it improves both the

efficiency and the accuracy of learning.

Let us reconsider MARCK's effort to learn the heuristic, "Prefer-Anchoring-over-Yoking.' I
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Figure 44 .illustratesMARCK's behavior for the ACCORD implementationof PROTEAN.

(Figure 23 in section 2 illustrates MARCK's behavior for the BB1 implementation of

PROTEAN.)

At this point, PROTEAN is operating under the focus:

Position long rigid constraining secondary-structure
in pal with strong constraint.

Given this focus, PROTEAN chooses to perform the action of KSAR56:

KSAR56: Do-yoke helix6-2 with helix4-2 in pa2 with NOEg.

However, the domain expertprefersthe actionof KSAR55:

KSAR55: Do-anchor helix6-2 to helix3-2 in pa2 with NOE8.

As discussed in section 2, the domain expert's action triggers MARCK, a learning knowledge

source that tries to identify the key difference between the two KSARs and automatically

program a corresponding control heuristic.

m--waqDm_w--m..llm

Insert Figure 44

A framework substantially reduces the number of potential differences between the two

KSARs that MARCK (and the domain expert) must investigate. Given the BB1 representation,

MARCK must search for differences on all attributes with the same name. Then it must ask

the domain expert to choose the key attribute from among ail whose values differ. Given a

framework representation, MARCK can focus on corresponding parameters in corresponding

patterns in the two KSARs. In this case, there are only four corresponding parameters in the

two action patterns and only two of them have different values: action-keyword and constraint.

A framework also prevents MARCK from making specious comparisons. Working within BB1

knowledge structures, different or undisciplined system builders may give the same name to

unrelated attributes in different knowledge sources. MARCK must pursue differences in the

values of these attributes as though they were meaningful. Conversely, if different attributes

happen to exhibit the same difference in values, MARCK must ask the domain expert which is

the key attribute. Since the domain expert is not a programming expert and ordinarily would

not appreciate the actual differences between two attributes having the same values, he or she

may choose the wrong one. By contrast, a framework focuses MARCK's and the domain

expert's attention on key task-specific control parameters by enforcing consistent and

semantically valid naming conventions and explicitly identifying corresponding parameters. As

a consequence, MARCK pursues only meaningful differences.
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A framework also enhances MARCK's ability to identify the heuristic function underlying a

domain expert's preference for one value of a parameter over another. MARCK inspects the

knowledge base to determine whether any known modifiers favor the expert's preferred value

over the system's preferred value. For example, in PROTEAN quickly is a defined modifier for

position, which is the superordinate of anchor and yoke. In Figure 44, MARCK determines that

the modifier, quickly, favors anchor over yoke, hypothesizes that this is the key difference

between the two KSARs, and asks the domainexpert for confirmation. If the modifier, quickly,

were not already defined, MARCK would search for the key attribute of the identified

parameter and for an appropriate canonical function, automatically program a new heuristic

function as discussed in section 2, and record it in the knowledge base as the definition of a

new modifier for the concept, position.

A framework enables MARCK to introduce a new heuristic at the appropriate level of the

control plan. Thus, once MARCK identifies quickly as the key modifier, it can search the

control plan for the highest superordinate of its current focus that specifies position or one of

its subordinates in the type hierarchy as the action keyword. With confirmation from the

domain expert, MARCK inserts the new modifier at that level of the plan. If the expert

objected, MARCK could work down the plan searching for the appropriate level at which to

insert the new modifier.

Finally, MARCK no longer needs its Lisp-English translator _}ince all of the objects on which

it operates are already expressed in ACCORD's stylized English representation. Thus, MARCK

completes its learning by simply inserting the new modifier before the corresponding parameter

in its focus decision on the blackboard and in the control knowledge sources that generate that

decision.

Quickly do-position a long rigid constraining
secondary-structure in pal with
strong constraint.

These advantages apply to other learning procedures as well. For example, as discussed in
I

section 2, we have been workingon a set of knowledge sources called WATCH to form

inductive generalizations of sequences of executed actions. For example, suppose a domain

expert executes the following sequence of actions:

Anchor Helix2-1 to Helixl-I in PAl with NOEl5.
Anchor Helix3-1 to Helixl-I in PAl with NOEIg.

The WATCH knowledge sourceswould determine that:

Helix2-1 $is-a Helix.
Helix3-1 $is-a Helix.
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Long Helix2-I = go.
Long Helix3-1 = 70.
NOEl5 $is-a NOE.
NOEl6 $is-a NOE.

and hypothesize that the domain expert's current focus is to:

Perform:
Anchor' Long Helix to Helix1-1 in PAl with NOE.

In principle,any BBI system could provide the data required for inductivegeneralization.In

practice,however, such learningordinarilyis not feasiblefor systems implemented directlyin

BB1 knowledge structures. Given the unrestricted number of KSAR attributes, the space of

possible generalizations is intractably large. Moreover, given an undisciplined approach to

attribute naming, the learning data are liable to be extremely noisy. They may support specious

generalizations, while entirely concealing valid generalizations. By contrast, a framework such as

ACCORD vastly reduces the space of possible inductions and guarantees that it is internally

consistent, unambiguous, and semantically valid. Given a framework, we believe that inductive

generalization is feasible for BB1 systems.
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5. Knowledge Engineering within the BB* Environment

The BB* environment facilitates knowledge engineering in two general ways. First, the task-

specific, domain-independent knowledge embodied in a framework facilitates the design and

implementation of new applications. To illustrate this potential, we discuss our experience in

building a prototype of the SIGHTPLAN system [50] within BB1-ACCORD. We then consider

the space of domains in which arrangement problems occur and ACCORD's applicability in

different regions of that space. Second, the BB* environment's capability for open systems

integration facilitates the development of multi-faceted systems that perform a greater variety

of tasks than conventional knowledge-based systems. To illustrate this potential, we discuss two

hypothetical multi-faceted systems, an expert arrangement-assembler and an expert protein-

analyzer.

5.1 Building SIGHTPLAN: A New Application of BBI-ACCORD

5.1.1 SIGHTPLAN's Problem

SIGHTPLAN must arrange pieces of construction equipment (e.g., cranes and trailers) and

construction areas (e.g., access roads and lay-down areas) in a two-dimensional construction site

to satisfy a variety of constraints. Part-whole relations exist among some of these objects (e.g.,

the employee-facilities include some trailors and a rest area). Part-whole relations also ex'st

among sub-regions of the construction site (e.g., the building-zone includes the building-site

and all of its borders). Available constraints include object-based constraints (e.g., the rest

area must be within a short distance of the trailers) and context-based constraints (e.g., the

access road must intersect the perimeter of the construction site on two sides). Since

construction projects proceed in identifiable stages, the layout design must include sub-layouts

for different stages. Further, there are transitional constraints between the stages (e.g., the

crane must move from the northwest corner of the building site to the southeast corner of the

building site between stages 1 and 2). (See 1"50] for a more detailed description of the

problem of designing construction-site layouts.)

Despite the obvious dissimilarities between proteins and construction sites, the problem of

designing a construction site closely resembles the problem of modeling the construction of a

protein. In both cases, the problem-solver must arrange physical objects in a spatial context to

satisfy constraints. It must accommodate a variety of constraints, including part-whole

relations, objects-based constraints, and context-based constraints, it must design multiple-
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componentsolutions for different time intervals and provide legal transitions from each

componentsolution to its successor.

On the other hand,while the two problemshaveformal similarities, SIGHTPLAN'sproblem

is substantiallylesscomplexthan PROTEAN'sproblem. SIGHTPLAN must deal with tens or

hundreds of objects, while PROTEAN must deal with hundreds or thousands of objects.

SIGHTPLAN must arrange objects in a two dimensional space, while PROTEAN must arrange

objects in a three-dimensional space. SIGHTPLAN must design layouts that incorporate fewer

than ten discrete states, while PROTEAN must construct proteins that move through a

continuous family of conformations. SIGHTPLAN knows in advance how many stages it must

consider and which objects and constraints belong in each state, while PROTEAN must

identify protein states and their constituent objects and constraints as part of its reasoning

process. SIGHTPLAN must design a small number of satisfactory site layouts, while PROTEAN

must construct the entire family of legal protein structures.

Because of the formal similarities between SIGHTPLAN's problem and PROTEAN's problem,

SIGHTPLAN's principal designers, Iris Tommelein and Ray Levitt, decided to develop it within

BB1-ACCORD and we collaborated with them on a prototype system. The following sections

discuss how ACCORD affected the design and implementation of different aspects of the

SIGHTPLAN prototype.

5.1.2 Choosing a Method

As discussed above, a problem-solving system could, in principle, solve an arrangement

problem by any of several different methods. Enumerating and characterizing alternative

methods and then choosing and operationalizing an appropriate method for a particular

application are time-consuming processes that can determine the success or failure of a system-

building effort. For example, it took approximately one person-year of effort to consider

alternative methods for PROTEAN and to operationalize the chosen assembly method.

The very existence of a relevant framework can facilitate this process by suggesting a

candidate method in a clearly operational form. If the framework already has been applied in

other domains, information about those applications can facilitate evaluation of the method for

the new application. Thus, it took approximately one person-month for Tommelein and Levitt

to decide to use the assembly method for SIGHTPLAN.
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5.1.3 Basic Knowledge Acquisition

Knowledge acquisition requires a conceptual analysis of the knowledge required by an

application and a technical analysis of appropriate knowledge representation structures. For

example, knowledge acquisition for PROTEAN began with unstructured discussions with

domain experts to discover the important domain concepts. The initial PROTEAN knowledge

base was an unprincipled collection of Lisp functions and data structures, converted to its

current declarative form during a reimplementation phase. All stages of knowledge acquisition

required close collaboration between domain experts and knowledge engineers.

A framework can facilitate knowledge acquisition by capturing the conceptual analysis

common to a class of applications, identifying appropriate knowledge representation structures,

and providing a software environment in which to build the new knowledge base. For example,

ACCORD requires domain-specific extensions of its conceptual network branches representing

objects, contexts, and constraints and specification of low-level functions for anchoring,

yoking, appending, etc. Thus, knowledge acquisition for SIGHTPLAN began directly with the

introduction of particular objects, contexts, and constraints into ACCORD's skeletal concept

network and investigation of alternative approaches to building low-level functions. Iri

addition, domain experts were able to do much of the knowledge acquisition, with modest

amounts of assistance from a knowledge engineer. Of course, since the framework provides

much of the actual code necessary to represent the knowledge_ there is a substantial reduction

in the number of lines of new code generated during knowledge acquisition.

5.1.4 Domain Knowledge Sources

A framework's action hierarchy guides the design of domain knowledge sources. Basically,

the system builder should consider designing one or more knowledge sources to instantiate each

terminal action type. The hierarchical classification of action types provides a nice

organization of the knowledge sources and the sequence in which to de,_elop them. Further, the

knowledge sources developed for previous applications can provide valuable prototypes for new

applications.

Without the benefit of ACCORD, the first version of PROTEAN had knowledge sources for

anchoring and yoking, which it used to position structures within one complete arrangement.

After studying the performance of this system, it became apparent that PROTEAN needed a

knowledge source for appending and only much later did it become apparent that PROTEAN

needed knowledge sources for defining partial arrangements. (PROTEAN still does not have
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knowledgesourcesfor integratingpartial arrangementsand coordinatingthemat multiple levels

of abstraction.)Eachknowledgesource,especiallythe early ones,requireda significant design

effort and eachsuccessiveone hadto becoordinatedwith thosedevelopedsofar. Sincewedid

not anticipateall contextsin which knowledgesourcesmight interact, we repeatedlymodified

previouslyimplementedknowledgesourcesto disambiguatethe relationshipsamongthem.

By contrast, SIGHTPLAN's current domain knowledge sources are close translations of

PROTEAN's domain knowledge sources and were implemented in a matter of days. Although

we anticipate that SIGHTPLAN and PROTEAN eventually will have many distinct knowledge

sources, we expect the translated knowledge sources to endure as the core of the SIGHTPLAN

system. If these expectations are borne out, we will extend ACCORD and other frameworks to

include a repertoire of prototype domain knowledge sources and introduce capabilities for

automatically instantiating them in new domains.

5.1.5 Control Knowledge Sources

A framework facilitates the development of control knowledge sources in several ways. First,

its action, event, and state templates articulate a set of candidate control concepts. Thus,

PROTEAN's system builders had to discover key control parameters, such as action class,

anchoree, and constraint, and appropriate modifiers, such as quickly, restricted, and strong. By

contrast, SIGHTPLAN's sytem builders could begin by considering the formal parameters in

ACCORD's action types as candidate control parameters and by considering the high-level

concept types and conceptual modifiers in ACCORD's skeletal concept network. Second, as in

the case of domain knowledge sources, some control knowledge sources transfer almost directly

to applications in new domains. For example, the prototype SIGHTPLAN system uses the basic

strategy that PROTEAN uses for small proteins. Of course, SIGHTPLAN introduces some new

modifiers and gives many of the common modifiers new procedural definitions. In addition,

we expect to develop more powerful strategies for the two systems that differ more

substantially, Again, however, the opportunity to transfer some of the control knowledge

permits rapid prototyping of a new application. After we have gained more experience with a

range of applications, we plan to develop skeletal control knowledge sources for different

subclasses and automatic methods for instantiating them in new domains. Finally, a

framework's perspicuous representation makes it easy to articulate and program alternative

control strategies. We plan to comparatively evaluate a variety of control strategies for both

PROTEAN and SIGHTPLAN.
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5,2 The Scope of ACCORD

5.2.1 Arranging Physical Objects in a Spatial Context

ACCORD naturally applies to tasks involving the arrangement of physical objects in a spatial

context. PROTEAN and S[GHTPLAN are esoteric examples of such domains. However,

consider, for example, the mundane task of furniture arrangement: arrange a specified set of

furniture in a designated room. We can define each piece of furniture as a physical-object in

the ACCORD knowledge base and the room as a context. 'We can identify part-whole

relationships among furniture groups (e.g., the table-and-chairs includes the table and each of

the chairs). We can identify part-whole relationships among areas of the room (e.g., the

northern exposure includes a window area and a fireplace area). We can define object-based

constraints on different pieces of furniture (e.g., each chair must be on a particular side of the

table). We can define context-based constraints on the positions of particular pieces of

furniture within the room (e.g., put the table near a window). Given this representation, we

could use the ACCORD actions to define I partial furniture arrangements, to position pieces of

furniture within each partial arrangement, to refine the positions of furniture groups into the

positions of their constituent pieces, and to integrate different partial furniture arrangements

to form a complete room design.

5.2.2 Arranging Procedural objects in a Temporal context

We believe that ACCORD also applies to tasks involving the arrangement of procedural

objects in a temporal context. For example, consider-the task of travel planning: arrange a set

of destinations in a designated time interval. We can define each destination as a temporal-

object in the ACCORD knowledge base and the time interval as a context. We can define part-

whole relationships among sets of destinations (e.g., the India destination includes destinations:

Srinagar, Agra, Jaipur, Udaipur, Benares, and Darjeeling). We can define part-whole

relationships among sub-intervals of the designated time interval (e.g., the spring interval

includes May and June). We can define object-based constraints on the relative times targetted

for particular destinations (e.g., go to India after Japan). We can define context-based

constraints on the absolute times targeted for particular destinations (e.g., go to Japan in time

for the cherry blossoms). Given this representation of the knowledge, we probably could use

the ACCORD actions to develop partial itineraries, to order destinations within partial

itineraries, to refine high-level destinations into more detailed itineraries for their constituent

destinations, and to integrate different partial itineraries to form a complete itinerary. We plan
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to build at least one application of BB1-ACCORD involving procedural objects in temporal

contexts in order to gain empirical evidence of its applicability to this important subclass of

arrangement problems.

5.2.3 Arranging Symbolic Objects in a Symbolic Context

Expanding the potential scope of ACCORD even further, it may be possible to apply it to

tasks involving the arrangement of general symbolic objects in general symbolic contexts. In

particular, it may apply to objects and contexts that are not metiic in character.

For example, consider a simplified project-management task: assign a set of project tasks

among a designated set of individuals. We can define each task as a task-object in the

ACCORD knowledge base and the set of individuals as a context. We can define part-whole

relationships among task groups (e.g., the task of designing knowledge sources includes tasks for

designing domain knowledge sources and designing control knowledge sources). We can define

part-whole relationships among subsets of the individuals (e.g., the expert C programmers are

John, Jim, Craig, and Bruce)' We can det'ine object-based constraints between different tasks

(e_g., the tasks of defining domain and control action languages must be performed by the same

individual). We can define context-based constraints On the assignments of particular tasks to

individuals (e.g., the geometry system must be implemented by expert C programmers). Given

this representation, we might be able to use the ACCORD actions to develop partial project

plans, to assign tasks to individuals within partial plans, to refine the assignment of high-level

tasks into assignments of their component tasks, and to integrate different partial plans to

form a complete project plan.

Of course, most project-planning tasks also have a temporal dimension with associated

constraints. Assuming that ACCORD applies to tasks involving the arrangement of procedural

objects in a temporal context, it might be possible to apply it to the complete project-planning

task: assign a set of project tasks to a designated set of individuals for completion at particular

times.

5.3 Building Multi-Faceted SysLems

As discussed in section 1, we require that all modules within a level of the BB* environment

satisfy uniform standards of knowledge content and representation. In adhering to this design

principle, we aim to achieve open systems integration of modules within a level. That is, we

aim to support the development of systems that: (a) configure and augment arbitrary sets of
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existing modules; (b) eliminate redundancy in the contents of those modules; (c) organize the

actions enabled by those modules in any appropriate organizational scheme; and (d)

superimpose on their reasoning uniform capabi!ities for control, explanation, and learning.

To illustrate the capability for open systems integration, consider a rrew class of applications

that we call multi-faceted systems. We define multi-faceted systems with reference to the

three-dimensional space of knowledge we have identified in this paper: knowledge about

different problem classes, knowledge about different problem-solving methods, and knowledge

about different subject-matter domains. Most contemporary knowledge-based systems occupy a

relatively small region of this space: each one knows how to solve a single class of problems by

means of a single problem-solving method in a single subject-matter domain. In contrast,

multi-facted systems expand their knowledge along one or more dimensions of the space: each

one knows how to solve more than one class of problems or how to apply more than one

problem-solving method or how to solve problems in more than one domain. Let us consider

two hypothetical multi-faceted systems.

We are thinking of building an expert arrangement-assembler--that is, a system that khows

how to apply the assembly method to arrangement problems in each of several subject-matter

domains. As illustrated in Figure 45, the arrangement-assembler initially would integrate

ACCORD, PROTEAN, and SIGHTPLAN by defining objects, constraints, and contexts for both

construction and biochemical domains. Similarly, it would integrate PRGTE/N and

SIGHTPLAN knowledge sources (not shown in Figure 45), exploiting the fact that they use

many identical knowledge sources that mention no domain-specific entities (see, for example,

Figures 36 and 38). We would add knowledge about refining prototypes, identifying analogous

problems, and measuring different aspects of problem-solving performance. Given this

knowledge and some problem-solving experience, the arrangement-assembler could, for

example: (a) automatically program prototype systems for new application domains; (b) transfer

control knowledge amongrelated probrem types; and (c) assess the effectiveness of control

knowledge for particular problem types. In general, the arrangement-assembler could develop

increasingly sophisticated arrangement-assembly expertise and apply its expertise to an

expanding variety of arrangement problems.

Insert Figure 45

Now consider an expert protein-analyzer--that is, a system that knows how to assemble
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protein structures and how to explore such structures for interesting features. As illustrated in

Figure 46, the protein-analyzer initially would integrate ACCORD, EXPLORE (a framework

being developed by Russ Airman to find interesting features of structured descriptions),

PROTEAN, and FEATURE (an application being developed by Altman to apply EXPLORE to

protein conformations). Thus, it would define actions, events, and states for both the

exploration and assembly methods. It would merge all biochemistry,knowledge into a single

type hierarchy. Similarly, it would incorporate the entire set of PROTEAN and FEATURE

knowledge sources (not shown in Figure 45). We could add knowledge about controlling the

various actions enabled by PROTEAN and FEATURE for particular purposes. Given this

knowledge, the protein-analyzer could, for example: (a) solve a test protein and then examine

the hypothesized conformations for interesting features; or (b) search for interesting features

while solving a protein and pursue only hypothesized conformations that exhibit interesting

features. In general, the protein-analyzer could combine different kinds of expertise to solve a

variety of more complex problems.

Insert Figure 45

As these examples illustrate, BB*'s capability for open systems integration introduces the

possibility of incrementally extending the depth and variety_ of knowledge within a single

system to encompass new problem classes, problem-solving methods, and subject-matter

domains. At the same time, the underlying knowledge base remains perspicuous, well-structured,

and non-redundant. Finaily, the system continues to employ uniform methods for control,

explanation, and learning, thereby presenting a coherent face for the system as a whole.
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6. The BB* Environment: Status and Plans

6.1 The BBI Architecture

6.1.1 Generality

We put forth BB1 as a general architecture for intelligent systems. Table 1 (see section 1)

briefly describes some of the application systems currently implemented or being implemented

in BB1. Most of these applications are being developed by other scientists at Stanford and

other research laboratories. In addition, we have shown elsewhere [23] that BB1 provides a

natural architecture for the knowledge and control strategies of the Hearsay-II [12] speech-

understanding system, the HASP [42] signal-interpretation system, and the OPM [26] task-

planning system. The number, variety, and significance of these applications suggest that BB1

provides a generally useful architecture. Aslwe and other scientists develop and classify new

applications, we will identify empirical bounds on BBI's generality and utility.

6.1.2 Control, Explanation, and Learning

We continue to extend and improve BBI's basic capabilities for control, explanation, and

learning.

In the area of control, BB1 currently has three sets of generic control knowledge sources. One

set of knowledge sources (illustrated in section 2) refines an application-specific strategy by

successively posting the names of control knowledge sources that post its prescribed sequences

of subordinates. We also are working on a set of knowledge sources that refine a strategy

expressed in framework knowledge structures by successively replacing its parameter phrases

with alternative legal values (discussed in section 4). A third set of knowledge sources

performs goal-directed reasoning by posting focus decisions that favor KSARs whose actions

would satisfy the preconditions of other high-priority KSARs [33]. All of these generic control

knowledge sources can work together, aiong with application-specific control knowledge sources,

to construct fully integrated control plans.

In the area of explanation, BB1 currently provides demand-driven, incrementally more

elaborate descriptions of a system's strategic plan, as illustrated in sections 2 and 4. In addition,

BB1 can display its explanations graphically. We are investigating other more focused styles of

explanation, as well as extensions of all styles to encompass a system's strategic goals and the

enabling conditions of pending KSARs.
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In the areaof learning, BB1 currently provides the MARCK knowledge sources for learning

new control heuristics from user intervention (see sections 2 and 4). We also have developed

the WATCH knowledge sources for drawing inductive generalizations from domain experts'

problem-solving actions. We have not yet developed the WATCH knowledge sources that

automatically program new control knowledge sources to regenerate inductively acquired

strategies during subsequent problem solving episodes. We also are investigating prototype

instantiation and learning by analogy as methods for learning how to use general knowledge in

a new domain" and for transferring control knowledge among related applications.

In addition to these new developments, we are conducting experiments to evaluate the

cost/benefit tradeoffs of exploiting BBI's capabilities for control, explanation, and learning.

6.1.3 Framework-Interpreter and Related Functions

We are busy implementing all framework-related functionality described in the paper. This

section describes the state of the implementation as of August, 1986. However, the reader may

assume that the implementation as of the current date has proceded further. Again, the

framework-interpreter is entirely independent of ACCORD and can be applied to any user-

specified framework specified with the appropriate BB1 knowledge structures. Moreover, since

all extensions to BB1 are designed to accommodate systems that integrate BB1 and framework

knowledge structures, current application systems can exploit all aspects of the evolving

implementation. We summarize the state of the implementation as follows:

• We have implemented all Slinks (e.g., Sis-a, Splays, $includes, Sentails, $triggers,

Senables, $causes, $promotes.

• We have implemented the marcher, the quantifier, and the translator, but not the

generator.

• We have extended the BB1 scl_eduler to use the matcher and quantifier to rate

pending KSARs on the agenda.

• We have extended the BB1 interpreter to use the translator to convert KSAR actions

exressed in framework knowledge structures into BB1 knowledge structures prior to

execution.
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• We are working on extensionsto the agenda-maintainerto apply appropriate

framework-interpretationfunctions during knowledgesource triggering, context

binding,and preconditionevaluation.

• We are investigatinga numberof strategiesthat exploit theconceptualnetworkfor

efficient use of framework-interpretation procedures. For example, we plan to

exploit the natural discrimination networks entailed in root verb hierarchies for

efficiency during invocation of knowledge sources that share commot_ triggering,

context, or precondition patterns: As a second example, we plan to exploit the

known relations between previous events and the states they promote to restrict the

potentially explosive search required to instantiate arbitrary state patterns.

• Finally, although the template grammar underlying our framework-interpretation

procedures satisfies the requirements of current applications, we anticipate that it

will prove too restrictive for later Versions of these applications and for new

applications. Therefore, we expect to replace it with a more powerful grammar at

some time in the future.

6.2 Current and Planned Frameworks

At this-time, two frameworks are implemented in BBI: ACCORD and EXPLORE.

As discussed in this paper, ACCORD embodies knowledge about assembling arrangements of

objects under constraints. We have demonstrated ACCORD's applicability in PROTEAN's

biochemistry domain and in SIGHTPLAN's construction domain. We have also examined its

applicability to problems involving procedural objects in temporal contexts and, more generally,

to problems involving symbolic objects in symbolic contexts. We continue to extend and refine

the knowledge in ACCORD as our understanding of specific applications grows.

EXPLORE [2], which is being developed by Russ Altman, embodies knowledge about

identifying interesting features of structured descriptions. At this time, EXPLORE is in a

more preliminary stage of development than ACCORD and it is being used in only one

application, Altman's FEATURE ['3] system for identifying biochemica[ly interesting features

of observed and hypothesized protein structures. Like ACCORD, however, EXPLORE has

potential applications in other subject-matter domains. _

Finally, we plan to develop new frameworks for several tasks, including: BBI's control,
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explanation,and learning tasks;and the several tasks--situationassessment,planning, plan

monitoring,situationsimulation,and plan modification--involvedin real-time processcontrol.

In general,asweand otherscientistsattemptto designnewframeworkswithin BB1and new

applicationswithin particular frameworks,we will increase our understanding of empirical

bounds on: (a) the availability and utility of knowledge at this level; (b) the range of

applicability of individual frameworks; and (c) the range of frameworks BB1 can accommodate.

6.3 A New Hierarchical Level: Shells

As discussed in section 1, architecture, framework, and application represent three discrete

levels on what is probably a continuum of knowledge abstractions. We plan to introduce a

fourth level, shells. Each shell will specialize a particular framework by augmenting its task-

specific language with prototypical domain and control knowledge sources that are appropriate

for a particular subset of tasks.

Like Clancey's HeraCles system for heuristic classification [7] and Chandrasekaran's "tools for

generic tasks" [5], these shells will articulate useful control strategies for solving particular

classes of problems. For example, given our experierice with SIGHTPLAN, we are building an

ACCORD shell that captures a domain-independent form of the l_nowledge sources PROTEAN

uses for small proteins. We believe that they will prove useful in other domains where

problems involve a relatively small number of objects and constraints. Similarly, we might

develop shells for arrangement-assembly tasks in domains involving physical versus temporal

objects or for domains whose contexts involve nominal versus metric dimensions.

Shells will offer an incremental advantage over frameworks in the ease of developing new

applications. The system builder has only to instantiate the skeletal branches of the concept

network and, perhaps, the prototypical knowledge sources that require domain-specific

information. As mentioned above, we are investigating automatic prototype-instantiation

capabilities to relieve the system builder of the task of instantiating knowledge sources. Of

course, the system builder pays for this advantage in loss of flexibility in the reasoning process.

Our shells will differ from systems such as Clancey's and Chandrasekaran's, however, in three

ways. First, they will articulate control knowledge, rather than control procedures. As a

consequence, a shell may support applications that exploit any of BBI's capabilities for control

reasoning, ranging from systems that apply systematic control procedures to those that reason

extensively about problem-solving strategy. In addition, they can exploit this knowledge for
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other purposes.Second,we do not presumethat there is a singlecorrectstrategyfor a given

task.Thus, for example,there may exist severalshells for arrangement-assemblytasks with

different characteristics.Third, our shellswill exist in the contextof the BB* environment.As

a consequence,they canbe configuredwith any other modulesfrom the environmentto form

more complex, but fully integratedsystems,with BBI's general capabilities for control,

explanation,and learningsuperimposeduponthem.

i
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7. Major Results

Our major results reinforce and manifest the four themes of the paper (see Figure 1 in

section 1):

• that an intelligent system reasons about its actions:

• that a system must have knowledge of its actions;

• that knowledge should be represented in an abstraction hierarchy;

• that knowledge modules within a level should satisfy uniform standards of content

and representation.

We have developed the BB1 architecture for systems that reason about their situations, their

goa!s, and their actions. BB1 systems integrate strategic and opportunistic methods to decide

which goals to pursue and which actions to perform. They explain how their actions serve their

goals and they learn from experience which actions help-them to achieve their goals. BB1

systems reason in these several ways by dynamically constructing, modifying, executing,

explaining, and learning about explicit plans for their own actions in real time.

We have empowered these systems with tl'.e gc'aeric knowledge in BB1, the task-specific

knowledge in frameworks such as ACCORD, and the more specific knowledge in applications

such as PROTEAN. As a consequence, these systems know what facts and states obtain in

particular contexts. They know what events and states they seek. They know what actions they

can perform, what events and states are necessary to enable their actions, and what events and

states their actions will produce. They use their knowledge to perform the control, explanation,

and learning functions required of them. Since they represent all of these different kinds of

knowledge explicitly, improving or extending their performance is a matter of improving or

extending their knowledge.

We have organized existing modules in the hierarchically layered BB* environment: The BB1

architecture supports multiple frameworks, each of which supports multiple applications. This

organization enables us to understand and describe BB*, but more importantly, to apply and

extend it. We apply BB* by building new systems that incorporate and augment existing

knowledge modules, possibly exhibiting synergistic effects of independently constructed

modules. We extend BB* by constructing new knowledge modules or expanding existing
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modules. Existing high-level modules guide and discipline the construction of subordinate

modules. Low-level modules substantiate superordinate modules and suggest new opportunities

for abstracting superordinate modules. Some of these extensions can be made automatically.

Finally, we have adhered to uniform standards of knowledge content and representation in

constructing modules at a given BB* level. We offer a single architecture, BBI, and its

associated frame-based network of knowledge str=uctures for representing actions, events, states,

and facts. Frameworks such as ACCORD must specify task-specific knowledge about actions,

events, states, and facts within a representation combining: a frame-based conceptual network,

linguistic templates, partial match tables, and template translations. Applications such as

PROTEAN must instantiate skeletal branches of the conceptual network and specify knowledge

sources that instantiate particular problem-solving actions, events, and states. As a consequence

of this within-level uniformity, BB* provides open systems integration. We can configure any

existing knowledge modules within any appropriate strategic paradigm to attack new problems.

Moreover, we can incrementally extend the knowledge within a given system to encompass

additional problem classes, problem-solving methods, or subject-matter domains. At any stage

in the system's evolution, we can superimpose upon it higher-level generic knowledge about

control, explanatibn, and learning to produce a fully integrated and coherent face for the

system as a whole.

From an engineering perspective, BB* may be viewed as a layered computing environment.

BB1 constitutes a general-purpose "virtual computer" for programs that articulate and reason

about their own actions. It offers a data representation and instruction set of considerable

generality. Frameworks such as ACCORD constitute higher-level programming languages. They

provide the more complex data representations and macro operators relevant in narrower, but

still significant, sets of programs. Applications such as PROTEAN constitute individual

programs developed within the environment. They can be programmed in the "machine

language" of BB1 or in the higher-level language of an appropriate framework. Like higher-

level languages in conventional computing environments, frameworks harness the power of BB1,

enabling applications builders to write better programs more easily. BB* differs most from

conventional computing environments in its orientation toward intelligent systems: programs

that perform knowledge-intensive reasoning about the problems they solve and about their own

problem-solving behavior.

From a scientific perspective, BB* may be viewed as an elementary theory of intelligent

systems. Like all scientific theory, theories of intelligence carry an inevitable tension between
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generality and power. Efforts to design encompassing architectures strive for generality: to

formulate fundamental laws of artificial intelligence. Efforts to develop task-specific

frameworks (or still more specific shells) strive for power: to articulate more constraining laws

for a narrower range of intelligent behavior. In both cases, effective application systems

confirm predictions of the proposed theory. The BB* environment--in which the BB1

architecture supports multiple frameworks and each framework supports a range of specific

shells and applications--constitutes a theoretical paradigm in which we can realize both

generality and power.
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Figure 1. Four Themes. (a) An intelligent system reasons about its actions. The BB1

architecture provides knowledge structres and a basic mechanism for control, explanation, and

learning. (b) To perform effectively, a system must have knowledge about its actions.

Frameworks explicitly represent knowledge about task-specific actions, events, and states and

the relationships among them. (c) Knowledge is represented in an abstraction hierarchy. The

BB" environment comprises an evolving body of knowledge: the BB1 architecture, various task-

specific frameworks, such as ACCORD, and various domain-specific applications, such as

PROTEAN (see Table 1). Conversely, an application system such as PROTEAN instantiates the

knowledge structures in a framework such _ ACCORD, which instantiates the knowledge

structures in BB1. (d) Knowledge modules within a level satisfy uniform standards of

knowledge content and representation. As a consequence, BB* achieves open systems integration:

Independently constructed modules can be fully integrated in implementation and reasoning.

For example, we could create an expert protein analyzer that integrates the knowledge and

reasoning of two frameworks, ACCORD and EXPLORE, and two applications, PROTEAN and

FEATURE, to solve more complex problems than it could solve with actions from either one

alone.
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Figure 2. The BB1 Blackboard Control Architecture. Domain knowledge sources solves

problems by constructing hypothetical solutions to them on the domain blackboard. Control

knowledge sources construct plans for the system's actions on the control blackboard. Learning

knowledge sources modify information in the knowledge base. The BB1 execution cycles

comprises three steps. (a) The interpreter executes the action of the most recently scheduled

KSAR (knowledge source activation record), producing changes to the contents of some

blackboard or the knowledge base. (b) These blackboard changes trigger other domain, control,

ar, d learning knowledge sources. The agenda-manager adds corresponding KSARs to the agenda.

(c) The scheduler rates each KSAR against the current control plan and chooses one KSAR for

execution. Unless it has been instructed to operate autonomously, the scheduler also invites the

user to request an explanation for the chosen action or to request other information.

I
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Figure 4. Two Amino Acids: Alanine and Tyrosine. As these examples illustrate, each amino

acid has a common part, at which it bonds to neighboring amino acids to form the backbone

of a protein, and a unique sidechain that distinguishes it from other amino acids.
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Figure 5. The Tertiary Structure of the Lac=Repressor Headpiece. The primary and secondary

structure of the protein fold in three-dimensional space, packing all component structures into

a globular molecule.



/_,_ Molecule Level /

i
Solid Level /

/Superatom Level

/Atom Level

Figure 6. PROTEAN's Levels of Reasoning. At the molecule level, PROTEAN reasons about

the size, shape, and density of the protein molecule. At the solid level, it reasons about the

relative positions of the test protein's secondary structures, represented as geometric solids. At

the superatom level, it reasons about the positions of each amino acid's constituent peptide, unit

and sidechain. At the atom level, it reasons aoout the positions of individual atoms.
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Figure 8. A Partial Solution for the Lac-repressor Headpiece. Pal includes helixl, helix2,

helix3, and coil3. Helix1, which has been defined as the anchor of pal, anchors helix2 and

helix3. Helix2 appends coil3, which has no constraints with the anchor. Helix2 and helix3 yoke

one another with the constraints between them.



Name - Helix1
Role - Anchor
Activated? - NIL
Type - A
Number- 1
Sequence - (LEU6 TYR7 ASP8 VAL9 ALA10 GLU11 TYR12 ALA!3 GLY14)
Number-AA - 9
Percent-AA - 0.1764706
Internal-Constraints - NIL
Number-Internal-Constraints - 0
External-Constraints - (3 4 5 6 7 8 9 10 11 12)
Number-External-Constraints- 10
Parameters - ((ORIGIN 0 0 0)

(REFERENCE 2.3 0 0)
(TIP 0 0 13.5))

Constraints-To-Other-Structures - ((RANDQMCOIL1 0 NIL)
(RANDOMCOIL2 0 NIL)
(HELIX2 2 (3 7))
(RANDOMCOIL3 1 (8))
(HELIX3 5 (4 9 10 11 12))
(RANDOMCOIL4 2 (5 6)))

Figure 9. An Object at PROTEAN's Solid Level, Helixl is an anchor and it is the first alpha-

helix in the lac-repressor primary sequence. It encompasses nine amino acids, numbers 6-14,

approximately 18% of the entire primary structure. Helix1 has no internal constraints, but it

has ten constraints to other structures, constraints numbered 3-12. Helixl's parameters describe

the cylinder used to model it at the solid level of the blackboard. Its constraints-to-other-

structures indicate that its ten constraints involve helices 2 and 3 and random coils 3 and 4.



Figure 10. A PROTEAN Knowledge Source: Yoke-Structures. Yoke-Structures is triggered by

modification of the applied-constraints attribute of any object at the solid level. It generates a

KSAR for each blackboard context in which two other structures, called anchoreel and

anchoree2, have constraints both with each other and with the triggering structure, called ps-

anchor. However, a given KSAR cannot be executed until both anchorees have yoking

information--previously identified legal locations. When a given KSAR is executed, Yoke-

Structures uses a numerical function also called yoke-structures (written in C and run remotely

on a Vax) to prune the legal locations for both anchorees to include only locations that satisfy

constraints between them. It modifies their locations attributes accordingly.



Name: Yoke-Structures

Trigger Conditions:
(($EVENT-LEVEL-IS STRUCTURAL.SOLID)
($EVENT-TYPE-IS Modify)
($CHANGED-AT-rRIBUTE-IS APPLIED-CONSTRAINTS)
($SET Possible-Combinations (Get-Possible-Combinations $TRIGGER-OBJECT)))

Context Variables:
((PS-Anchor Anchoreel Anchoree2) Possible-Combinations)

Preconditions:
(($SET Yoking-lnfo (There-ls-Yoking-lnfo-For Anchoreel Anchoree2))
($VALUE Anchoreel 'Applied-C0nstratnts)
($VALUE Anchoree2 'Applied-Constraints))

Obviation Conditions: NIL

KS Variables:
((NewLocLabelForAnchoreel (Generate-LocTableLabel PS-Anchor Anchoreel

(LENGTH ($VALUE Anchoreel 'Legal-Orientations))))
(NewLocLabelForAnchoree2 (Generate-LocTableLabel PS-Anchor Anchoree2

(LENGTH ($VALUE Anchoree2 'Legal-Orientations))))
(Descriptor1 (Make-Descriptor-For-Y0ke PS-Anchor Anchoreel Anchoree2))
(Descriptor2 (Make-Descriptor-For,Yoke PS-Anchor Anchoree2 Anchoreel)))

Actions:
((1 (T)

(EXECUTE ($SET YokeResult (Yoke-Structures PS-Anchor
Anchoree 1 Anchoree2
(CADAR (LAST ($VALUE Anchoreel 'Legal-Orientations)))
(CADAR (LAST ($VALUE Anchoree2 'Legal-Orientations)))

NewLocLabelForAnchoree 1 Descriptor1
NewLocLabelForAnchoree2 Descriptor2
(LENGTH Yoklng-|nfo) Yoking-lnfo VanderWaalsCheck?))))

(2 (T)
(PROPOSE changetype MODIFY object Anchoreel attributes

((Legal-Orientations (APPEND
($VALUE Anchoreel 'Legal-Orientations)
(LIST (LIST 'Yoke NewLocLabelForAnchoreel
(Car YokeResult) Descriptor1)))

(Applied-Constraints (APPEND
($VALUE Anchoreel 'Applied-Constraints)
(LIST Yoking-lnfo))))))

(3 (T)
(PROPOSE changetype MODIFY object Anchoree2 attributes

((Legal-Orientations (APPEND
($VALUE Anchoree2 'Legal-Orientations)
(LIST (LIST 'Yoke NewLocLabelForAnchoree2
(Car YokeResult) Descriptor2)))

(Applied-Constraints (APPEND
($VALUE Anchoree2 'Applied-Constraints)
(LIST Yoking-lnfo))))))



Name- KSAR50
Trigger-Event - ANCHOR-HELIX modifying attributes of HELIX1
ContextVars - ((PS-Anchor Helix1)

(Anchoreel Helix3)
(Anchoree2 Helix2))

KS - Yoke-Structures
BoundVars - ((NewLocLabelForAnchoreel HellinHel3-5)

(NewLocLabelForAnchoree2 Hetl inHel2-4)
(Descriptor1 Yoke-Hel_x3-and-HeJix2-around-Helix l )
(Descriptor2 Yoke-Helix2-and-Helix3-around-Helixl ))

ExecutableCycle - 18
ScheduledCycle - NIL
ExecutedCycle - NIL
Status - EXECUTABLE

Figure 11. A Yoke-Structures KSAR. Yoke-Structures has been triggered by a modification of

helixl's applied-constraints. This KSAR represents the blackboard context in which helices 2

and 3 have constraints with one another and with helixl. Since both helices have previously

identified locations, the KSAR is executable.



EventName - EVENT64
ObjectName - Helix3
EventCycle - 27
ChangeType - MODIFY
EventLevel - SOLUTION,SOLID

Changes - ((Locations (...))
(Applied-Constraints (...)))

Creator - KSAR50

Figure 12. A Yoke-Structures Event. On BBI cycle 27, KSARS0 was executed and Yoke-
....

Structures modified helix3's locations and applied-constraints.
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Figure 13. A PROTEAN Control Plan. In attempting to solve the lac-repressor headpiece,

PROTEAN decides to pursue a strategy in which it develops a single partial solution around

the best available anchor. It immediately begins to implement this strategy, focusing on actions

that create the best anchor space. In particular, it favors actions that give preference to long,

rigid, constraining structures as the anchor. As indicated by the directed lines associated with

this focus, PROTEAN performs these kinds of actions for approximately six BB1 cycles, until

it identifies helixl as the best anchor. PROTEAN then implements the next phase of its

strategy, focusing on actions that position other structures relative to helixl. In particular, it

favors actions that position long, rigid, constraining, constrained anchorees with strong

constraints. As indicated by the directed lines associated with this focus, PROTEAN performs

these kit_ds of actions until at least BB1 cycle 30.



Protein-Name - Lac-Repressor-HeadDiece
Primary-Structure - (MET1 LYS2 PRO3 VAL4 THR5 LEU6 TYR7 ASP8 VAL9 ALA10

GLU11 TYR12 ALA13 GLY14 VAL15 SER16 TYR17 GLN18 THR_9

Secondary-Structure -

VAL20 SER21 ARG22 VAL23 VAL24 ASN25 GLN26 ALA27 SER28
HIS29 VAL30 SER31 ALA32 LYS33 THR34 ARG35 GLU36 LYS37
VAL38 GLU39 ALA40 ALA41 MET42 ALA43 GLU44 LEU45 ASN46
TYR47 ILE48 PRO49 ASNS0 ARG51)
((Coil 1 MET1 THR5)
.(Helix 1 LEU6 GLY14)
(Coil 2 VAL15 SER16)
(Helix 2 TYR17 ASN25)
(Coil 3 GLN26 ARG35)
(Helix 3 GLU36 LEU45)
(Coil 4 ASN46 ARG51))

NOEs - ((1 VAL4 3 TYR17 5)
(2 VAL4 3 TYR47 5)
(3 LEU6 4 TYR17 5)
(4 LEU6 4 MET42 5)
(5 LEU6 4 TYR47 5)
(6 VAL9 3 TYR47 5)
(7 ALA10 2 TYR17 5)
(8 TYR12 5 ALA32 2)
(9 TYR12 5 ALA40 2)
(10 TYR12 5 ALA41 2)
(11 TYR12 5 MET42 5)
(12 TYR12 5 LEU45 4)
(13 VAL15 3 TYR47 5)
(14 TYR17 5 MET42 5)
(15 VAL24 3 TYR47 5)
(i6 VAL30 3 MET42 5)
(17 MET42 5 TYR47 5))

Figure 14. PROTEAN's Representation of the Lac-Repressor Headpiece Problem. The

attribute, primary-structure, lists the lac-repressor's defining sequence of amino acids.

Secondary-structure lists each random coil and alpha helix in the protein, along with first and

last amino acids in the corresponding subsequence of the primary structure. NOEs lists all

observed NOE measurements, along with the associated pairs of amino acids and atoms.



Title - DEVELOP-PS-OF-BEST-ANCHOR

Description - "Position solid structures relative to the single best anchor." o

Rationale - "For small proteins, a single partial solution will do."
Weight - 10

Procedure-Type - Follow-Sequence

Procedure-Data - (CREATE-BEST-ANCHOR-SPACE POSITION-ALL-STRUCTURES)
Expired-Prescription - NIL

Current-Prescription - (CREATE-BEST-ANCHOR-SPACE)

Goal- (ALL-PRESCRiPTIONS-FOLLOWED)

Status- Operative
First-Cycle- 1

Last-Cycle - NIL

Figure 15. An Illustrative PROTEAN Strategy: Develop-PS-of-Best-Anchor. The attribute,

procedure-type, indicates that this strategy should be refined with a generic BB1 procedure

called follow-sequence, which successively establishes each element of the strategy's procedure-

data as the strategy's current-prescription. The goal indicates that the strategy should remain

operative until PROTEAN has established all elements of the procedure-data as the current-

prescription and achieved each of their individual goals.



Name: Initialize-Prescription
Trigger Conditions:

(($EVENT-LEVEL-IS CC)NTRC)L-PLAN.STRATEGY)
($EVENT-TYPE-IS ADD)
(EQ ($VALUE $TRIGGER-OBJECT 'Procedure-Type) 'Follow-Sequence))

Context Variables: NIL

Preconditions: (T)

Obviation Conditions:

KS Variables: NIL

NIL

Actions:
((1 (T)

(PROPOSE changetype MODIFY object $TRIGGER-C)BJECT attributes
((Current-Prescripti0n (CAR

($VALUE STRIGGER-C)BJECT 'Procedure-Data)))))))

Figure 16. A Generic Control Knowledge Source. Initialize-Prescription is triggered by the

appearance of a new strategy whose procedure-type is follow-sequence. When executed, it

establishes the first element of the strategy's procedure-data as its current-prescription.



Title - Create-Best-Anchor-Space
Description - "Create an anchor space for the most constraining solid-anchor."
Rationale - "The most constraining solid-anchor will restrict the search space for

positioning other structures,"
Weight- 1
Heuristics- (PREFER-RIGID-ANCHORS PREFER-LONG-ANCHORS

PREFER-CONSTRAINING-ANCHORS)
Goal - ($FIND (QUOTE STRUCTURAL,SOLID-ANCHOR)

(QUOTE ((ROLE (QUOTE ANCHOR))
(ACTIVATED? T))))

Select-Update - ($FIND (QUOTE STRUCTURAL SOLID-ANCHOR)
(QUOTE ((ROLE (QUOTE ANCHOR))

(ACTIVATED? T))))
Focus-Status - Operative
Stability - Dynamic
First-Cycle - 3
Last-Cycle - NIL

Figure 17. PROTEAN's First Focus. Create-Best-Anchor-Space identifies three heuristics for

choosing an anchor: Prefer-Long-Anchors, Prefer-Constraining-Anchors, and Prefer-Rigid-

Anchors (see Figure 18). Its goal specifies that the scheduler should use these heuristics to

choose pending KSARs until PROTEAN has established an anchor. Its select-update specifies

that, when this goal is achieved, the established anchor should be passed back to the

superordinate strategy.



Title - Prefer-Rigid-Anchors
Description - "Prefer rlgld structures as anchors."
Rationale - "They can be positioned more precisely and, therefore, they impose

stronger constraints on the positioning of anchorees."
Weight - 8
Function - (if (EQ ($VALUE KSAR 'ObjectName) 'Helix)

then 100
elseif (EQ ($VALUE KSAR 'ObjectName) 'Beta-sheet)

then 50 else 0)
Heuristic-Status - Operative
First-Cycle - 7
Last-Cycle - NIL
Stability - Stable

Figure 18. A PROTEAN Heuristic. Prefer-Rigid-Anchors specifies that KSARs should get

ratings of 100, 50, or 0, depending upon whether their actions operate on anchors that are

alpha helices, beta sheets, or random coils. The weight, 8, indicates that this heuristic is rather

important, on a scale 1-10.



Name - KSAR15
Trigger-Event - POST-SOLID-ANCHORS adding Helix1
ContextVars - NIL "
KS - Activate-Anchor-Space
BoundVars - ((PS-Anchor Helix1))
ExecutableCycle - 7 "
ExecutedCycle - NIL
ScheduledCycle - 16
Status - EXECUTABLE
Focus - FOCUS1: Create-Best-Anchor-Space
Ratings - Prefer-Rigid-Anchors 100

Prefer-Long-Anchors 60
Prefer-Constraining-Anchors 83,33
Prefer-Activate-Anchor-Space 100

Weighted-Total - 2564

Figure 19. Ratings for KSAR15 against PROTEAN's First Focus. KSAR15 represents the

knowledge source Activate-Anchor-Space triggered by the creation of an object called helix1.

Its attribute, weighted-total, shows its overall rating against PROTEAN's first focus decision

(see Figure 17). This value combines KSAR15's ratings against each of the focus decision's

component heuristics. For example, since KSAR15 specifies helixl as the anchor, it gets a

rating of 100 against the heuristic called Prefer-Rigid-Anchors (see Figure 18). This rating

contributes to the weighted-total in proportion to its weight, 8.



Title - POSITION-ALL-STRUCTURES-HELIX1
Description - "Opportunistically apply all available constraints to anchor and yoke

all solid structures in the context of the strategically selected anchor."
Rationale - "Opportunistic selection of anchorees, constraints, and operations

(anchoring versus yoking) yields the most restricting individual actions."
Weight- 1
Heuristics - (PREFER-STRATEGICALLY-SELECTED-ANCHOR

PREFER-RIGID-ANCHOREES
PREFER -LONG -ANCHOREES
PREFER-CONSTRAINED-ANCHOREES
PREFER-CONSTRAINING-ANCHOREES
PREFER-STRONG-CONSTRAINTS)

Goal - (ALL-STRUCTURES-POSITIONED-FOR 'HELIX1)
Select-Update - Nil
Focus-Status- Operative
Stability - Dynamic _
First-Cycle - 11
Last-Cycle - NIL

Figure 20. PROTEAN's Second Focus. Position-All-Structures specifies six heuristics for

positioning structures relative to the chosen anchor, helixl: Prefer-Rigid-Anchorees, Prefer-

Long-Anchorees, Prefer-Constraining-Anchorees, Prefer-Constrained-Anchorees, Prefer-Strong-

Constraints, and Prefer-PS-Anchor-is-Helixl. [_ goal specifies that the scheduler should use

these heuristics to choose pending KSARs until PROTEAN has positioned all structures relative

to helixl.



Name - KSAR34
Trigger-Event - ACTIVATE-ANCHORSPACE modifying attributes of HELIX1
ContextVars - NIL
KS - Add-Anchoree-to-Anchorspace
BoundVars - ((PS-Anchor Helix1)

(PS-Anchoree Helix2)
l • • )

ExecutableCycle - 16
ExecutedCycle - NIL
ScheduledCycle - NIL
Status - EXECUTABLE
Focus - FOCUS2:Position-All-Structures-Helix1
Ratings - Prefer-PS-Anchor-ls-Helixl 100

Prefer-Rigid-Anchorees 100
Prefer-Long-_Anchorees 70
Prefer-Constraining-Anchors 20
Prefer-Constrained-Anchorees 100
Prefer-Strong-Constraints 0

Weighted Total - 2750

Figure 21. Ratings for KSAR34 against PROTEAN's Second Focus. KSAR34 represents the

knowledge source Add-Anchoree-to-Anchor-Space triggered by the establishment of helix/ as

the anchor, with helix2 as a potential anchoree. Its weighted-total rating against PROTEAN's

second focus decision (see Figure 20) combines its ratings against each of the focus decision's

component heuristics. For example, since KSAR34 specifies helix2 as the anchoree, it gets a

rating of 100 against the Heuristic called Prefer-Rigid-Anchorees.



I recommend KSAR15: Activate-Anchor-Space modifying attributes of Helix1

) Why

I am recommending KSAR15 because I am attempting to

H2 (100) Prefer rigid structures as anchors

H3 (60) Prefer Anchors that represen t longer segments of the primary sequence
H4 (33,33) Prefer Anchors that have many constraints with many other structures

> Explain H2

I am attempting to prefer rigid structures as anchors because they can be

positioned more precisely and, therefore, they impose stronger constraints
on the positioning of anchorees.

> Why

I am using H2, H3, and H4 because ! am attempting to

F1 Create an anchor space for the most constraining solid-anchor.

> Explain

I am attempting to create an anchor space for the mos.t Constraining solid-anchor

because the most constraining solid-anchor will restrict the search space for

positioning other structures.

> Why

I am using F1 because I am attempting to

$1 Position solid structures relative to the single best anchor.

> Explain

I am attempting to position solid structures relative to the single best anchor
because for small proteins, a single partial solution will do.

Figure 22. Explanation of the Decision to Perform KSAR15.



1 recommend:
KSAR56: Yoke-Structures

:> Override with KSAR55.

I am performing:
KSAR55: Anchor-Helix

• • *

I would like to understand why you prefer KSAR55 over KSAR56:

Is it because you prefer:
(a) KS = Anchor-Helix over KS = Yoke-Structures

>a

I am modifying my current plan to include a new heuristic:

(if (EQ ($VALUE KSAR 'KS) 'Anchor-Helix) then 100 else 0

Is this OK? "

> Yes

What should I call the new heurstic?

> Prefer-Anchoring-Over-Yoking

Shall I modify the knowledge source: Build-PAs?

> Yes

I am modifying the knowledge source: Build-PAs.

Figure 23 MARCK Learns a New Control Heuristic.



Role-Type NaturaI-T Is-a Is- a

angement-Role

T
ls-a

T
Anchor

Object Constraint Context Action Event State Helix 1 < Instantiates Helix 1-1

I_ t_ s-a Includes

. Assem_2embly= Asse Y- ! AA35 /

/Is-a Action Event _tate/_Playsj

Figure 24. Schematic Overview of ACCORD's Conceptual Network. Concept types (e.g., helix,

secondary-structure) intensionaIIy define generic concepts by means of is=a links. Concept

individuals (e.g., helix1) exemplify particular concept types. Concept instances (e.g., helix1=1)

instantiate particular individuals to play particular roles (e.g., anchor) in particular contexts.

Bracketed links indicate legal links (e.g., a concept individual may exemplify a concept type),

while unbracketed links indicate actual links (e.g., the individual helix1 actually does examplify

the type helix). Concepts can have attributes whose values are static or procedural. Both

attributes and link relations are inheritable, PROTEAN=specific concepts in this figure appear

in bold type.



Object <

/_ls-a

Physical-Object

-a

cludes "l _ ._0 ry- L " J • .
Protein "_Structure _ 4mtno-Acid

_.l/ix Beta-Sheet Random-Coil

Shape Shac,e Shal0e
Cylinder Prism Sphere

t ls-a

Spatial-Constraint

Context-based
Constraint

f ls-a

Surface
Constraint

Object-based
Constraint

/_ls-a

NOE

> Context

/_ ls-a

Spatial-Context

f ls-a

Molecule

Figure 25. ACCORD's Skeletal Branches for Objects, Contexts, and Constraints. ACCORD

requires specification of the objects, contexts, and constraints that figure in arrangement

problems in particular domains. In general, particular constraints can involve particular objects

or contexts. PROTEAN-specific entities appear in bold type.
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.rrangement i-artiaI-Arrangernent - . . >Included-Object /

Docks] Ancho_r fAnchors, _>,nc.n/0ree fAppendS_Ap_pendag e

Figure 26. ACCORD's Arrangement-Role Types. An arrangement is a complete solution to an

arrangement problem and may include one or more partial arrangements. A partial-

arrangement is a partial solution that includes a subset of the objects, constraints, and

contextual regions specified in the problem. Particular partial-arrangements can incorporate,

merge, or dock with one another. Included-objects can serve as anchors, anchorees, or

appendages within a partial-arrangement. An anchor can anchor an anchoree. An anchoree can

append an appendages. In addition, included-objects can yoke or consolidate with one another.
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Figure 27. ACCORD's Type Hierarchy of Arrangement-Assembly Root Verbs. Assemble has

four subtypes. Defining a partial arrangement involves creating a partial arrangement, including

objects in it, and orienting the partial arrangement about a selected anchor. Positioning objects

within a partial arrangement may involve anchoring, restricting, yoking, appending, or

consolidating them. Coordinating partial arrangements may involve refining them at lower

levels of abstraction or adjusting them at higher levels of abstraction. Integrating partial

arrangements may involve merging those that have a common anchor, incorporating one partial

arrangement into another one that shares a common object, or docking those that include

objects that constrain one another.



Do-Apply<_ Entails

Do-Generate < Entails

Do-Position

l ls-a

Do-Anchor

Apply< Entails

Entails
Generate <

Position

l ls-a

Anchor

i>

Did-Apply< Entails

Did-Generate. ,( Entails

Is-Applied ._- Entails

Is-Generated < Entails

Did-Position

l ls-a

Did-Anchor

]s-Positioned

l ls-a

Is-Anchored

Figure 28. Homologous Action, Event, and State Subnetworks. The root verb hierarchy

underlies homologous action, event, and state type hierarchies, distinguished by verb tense.

Do-<verb) signifies an action. Did-<verb> signifies an event. Is-<verbed> signifies a state.

Implicit $<links> indicate, for example, that do-anchor actions $entail do-apply actions.



DId-Ap_ly Has-Locations

"_ntails, /_.Entails-]J

" / _.._.. fCauses_'_ I j_._

Did-Anchor Did-_-YokN _

Figure 29. Some Legal Relations among Actions, Events, and States. Did-position events

trigger do-yoke actions, which must be enabled by has-locations states. When executed, do-yoke

actions cause did-yoke events, which promote is-positioned states. Implicit $<link> relations

indicate, for example, that did-anchor events trigger do-yoke actions and that do-yoke actions

cause did-apply events.



Assemble

Position

Anchor

a pa

an included-object In a pa with

an anchoree to the anchor

constraints

\
of a pa with constraints

Figure 30. Partial Matches between Assemble, Position, and Anchor Templates. Partial matches

identify semantically corresponding formal parameters in all pairs of templates. In theses

examples: Assemble, position, and anchor all represent verb keywords. Included-object and

anchoree represent objects being positioned. All parameters called pa refer to the partial

arrangement. Parameters called constraints represent constraints to be applied.



ACCORD Template: Anchor Anchoree to Anchor in PA with Constraints.

BB1 Template:
((1 (T)

((EXECUTE ($Set Constraints (CONSTRAINTS-IN Constraints)))
(EXECUTE ($Set CSS-Anchor-Results (CDR (CSS-ANCHOR Anchoree

Anchor PA Constraints))))
(PROPOSE changetype MODIFY object Anchoree attributes

CSS-ANCHOR-RESULTS))))

PROTEAN CSS-ANCHOR Function:
(PROG (AbTable PObject PAnchor PConstraints Sample-Vector Description

CalcLocAns DescribeAns)
(SETQ AbTable (CSS-GENERATE-TABLE-NAME Object Anchor

Constraints PA 'Anchor)
(SETQ PObject ($SHORT-NAME ($OBJECT Object 'lnstantiates)))
(SETQ PAnchor ($SHORT-NAME ($OBJECT Anchor 'lnstantiates)))
(SETQ PConstraints ($SHORT-NAME Constraints))
(SETQ Sample-Vector '(2 2 2 30 30 30))
(SETQ Description (LIST 'Anchor PObject 'to PAnchor))
(SETQ CalcLocAns (GS-CALCULATE-LOCATIONS AbTable NIL PAnchor

PObject PConstraints NIL Description Sample-Vector NIL))
(IF (NULL (CAR CalcLocAns))

THEN (RETURN CalcLocAns))
(SETQ DescribeAns (GS-DESCRIBE-LOCATIONS AbTable PAnchor

PObject PConstraints 'GS-CALCULTATE-LOCATIONS
(DATE) Description))

(RETURN (CDR DescribeAns)))

Figure 31. ACCORD and BB1 Templates for the Do-Anchor Action. Both templates refer to

the same parameters, which can be instantiated to define specific action patterns. The

ACCORD template is essentially a macro for the more complex underlying BB1 program of

rules. Note that all application-specific routines for constraint satisfaction are inserted

indirectly through calls to ACCORD's generic CSS-<extension> functions.



ACCORD Template: Is-Anchored Anchoree to Anchor in PA with Constraints.

BB1 Template:
((EQ ($OBJECT Anchoree 'Anchored-by) Anchor)
(FMEMB Anchor ($OBJECTS PA 'Includes))
($OBJECT Anchoree 'Located-by)
(EQ ($VALUE ($OBJECT Anchoree 'Located-by) 'Constralnt-Set-Used)

Constraints))

Figure 32. ACCORD and BB1 Templates for the Is-Anchored State. Both templates refer to

the same parameters, which can be instantiated to define specific state patterns. The ACCORD

template is essentially a macro for the more complex underlying BB1 program of access

functions.



(a)
Target
Pattern Do-Position constraint

Relation Is-a ts-a

Helix3 in PAl with a strong

Helix3-1 to Helix1-1 in PAl with
Test
Pattern Do-Anchor NOE27

Target
Patter,_ Do-Position Helix3 with a strong constraint

Relation Is-a

Rating 1O0

w_

100

Is-a

100

Test
Pattern Do-Anchor Helix3-1 PAl with NOE27

in PAl

,oo\ o\
to Helix1-1 in

Match
Rating 95

(b)

Figure 33. Matching Two Action Patterns. (a) The test pattern produces a perfect match to the

target pattern because: Do-anchor is-a do-position action. Helix3-1 is helix3-1. Pal is pal.

NOEl is-a constraint. (b) The match rating, 95, combines component ratings for each

parameter and modifier in the target pattern, proportionate to their weights. In this case, the

perfect match entails ratings of 100 for each parameter and NOE27 rates 80 against the

modifer, strong.



Generate X such that:
Is-a X Long Hellx
Plays X Included-Objects
Is-Positioned X

Is-a X (Long) Helix
-> ($ALL-OBJEC:TS Helix 'Can-be-a)

= (Helix1 Helix2 Helix3
Helix1-1 Helix2-1 Helix3-1)

Plays X Included-Object
-> (Helix1-1 Helix2-1 Helix3-1)

Is-Positioned X
-> (Helix1-1 Helix2-1 Helix3-1)

Is-a X Long Helix
-> ((Helix1-1 (90)) (Helix3-1 (70)) (Helix2-1 (40)))

Figure 34. Generation of Parameter Values. This set of expressions generates all long helixes

that are positioned in some partial arrangement, best first. First, the generator generates all

legal values for X to instantiate the state, Is-a helix. Then it prunes this set to include only

legal values of X to instantiate the state, Plays X included-object. Then it prunes the reduced

set to include only legal values of X to instantiate the state, Is-positioned X. Finally, it orders

the remaining set according to the rating of each value in the phrase, Long X.



ACCORD Template: Anchor Anchoree to Anchor in PA with Constraints.

BB1 Template:
((1 (T)

((EXECUTE ($Set Constraints (CONSTRAINTS-IN Constraints)))
(EXECUTE ($Set CSS-Anchor-Results (CDR (CSS-ANCHOR Anchoree

Anchor PA Constraints))))
(PROPOSE changetype MODIFY object Anchoree attributes

CSS-ANCHOR-RESULTS))))

[CSS-ANCHOR . . . ]

ACCORD Pattern: Do-Anchor Helix2-1 to Helix1-1 in PAl with CSetl.

BB1 Pattern:
((1 (T)

((EXECUTE ($Set Constraints (CONSTRAINTS-IN CSetl)))
(EXECUTE ($Set CSS-Anchor-Results (CDR (CSS-ANCHOR Helix2-1

Helix1-1 PAl CSetl))))))
(PROPOSE changetype MODIFY object Helix2-1 attributes

CSS-ANCHOR- RE SULTS)

[CSS-ANCHOR... ]

Figure 35. Translation of Action Patterns. The translator substitutes the parameter values in

the ACCORD pattern for the corresponding parameters in the BBI template.
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Figure 36. A Domain Knowledge Source in ACCORD. Yoke-Structures (see Figure 10) is

represented as a conceptual network comprising each knowledge source component (e.g., trigger

precondition), each component's constituent action, event, and state patterns, and appropriate

links among them. Each of these patterns exemplifies a particular action, event, or state type.

For example, Yoke-Structures's trigger event, Did-restrict included-object (yokee) in any-pa

(the-pa) exemplifies the did-restrict event. For simplicity, these exemplifies links do not

appear in the illustration.
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Figure 37. A KSAR in ACCORD. This Yoke-Structures KSAR (see Figure 11) is represented

as a conceptual network comprising each knowledge source component, each component's

action, event, and state patterns, and appropriate links among them. Each of these patterns

matches or instantiates the corresponding pattern in the Yoke-Structures knowledge source. For

example, KSARS0's trigger event, Did-anchor helix2-1 to helixl-I in pal with NOEl matches

Yoke-Structures's trigger event, Did-restrict included-object (yokee) in any-pa (the-pa)

because did-anchor entails did-restrict, helix2-1 plays included-object and pal plays pa.

Similarly, KSAR50's action, Do-yoke helix2-1 with helix3-1 in pal with NOE6 instantiates

Yoke-Structures's action, Do-yoke yokee with partner in the-pa with constraint because helix2-1

is the bound value of yokee, helix3-1 is the bound value of partner, pal is the bound value of

the-pa, and NOE6 is the bound value of constraint. Again, for simplicity, these links do not

appear in the illustration.



.Did-Restrict Anchoree (Secure-Anchoree)

,. /rigger in PA (The-PA)

/Context NIL Triggers
/S Precondition ------Has Secure-Anchoree Few Locations

/_ Obviation " " Not Has Secure -Anchoree Few Locati°ns__ J
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_Result \ Did-Focus on:

Perform:
Do-Append Appendage to Secure-Anchoree

in The-PA with Constraints "_

Until: , Promotes/j }
Exists: Has The-PA Status Complete _'_ _/

Because: Rational_e_._
Has Secure-Anchoree Few Locations _-
Has Do-Append Low Cost

Figure 38. A Control Knowledge Source in ACCORD. Append-to-Secure-Anchoree is

represented as a conceptual network comprising each knowledge source component (e.g., trigger

precondition), each component's constituent action, event, and state patterns, and appropriate

links among them. Each of these patterns exemplifies a particular action, event, or state type.

For example, the trigger event, Did-restrict anchoree (secure-anchoree) in pa (the-pa)

exemplifies the did-restrict event. For simplicity, these exemplifies links do not appear in the

illustration. In addition, Append-to-Secure-Anchoree's action and result are control actions and

events (do-focus-on and did-focus-on) whose parameters (prescription, goal, and rationale) are

represented as conceptual networks comprising each focus component (e.g., prescription, goal,

rationale), each component's constituent action, _,ent, and state patterns, and appropiate links

among them. These patterns also exemplify particular action, event, and state types.



Figure 39. An ACCORD KSAR. This Append=to=Secure-Anchoree KSAR is represented as a

conceptual network comprising each knowledge source component, each component's constituent

action, event, and state patterns, and appropriate links among them. Each of these patterns

matches or instantiates the corresponding pattern in the Yoke-Structures knowledge source. For

example, KSAR37's trigger event, Did-anchor helix2-1 to helixl-1 in pal with NOEl matches

Append-to-Secure-Anchoree's trigger event, Did-restrictanchoree (secure-anchoree) in pa

(the-pa) because did-anchor entails did-restrict, helix2-1 plays anchoree and pal plays pa.

Again, for simplicity, these links do not appear in the illustration. In addition, KSAR37's

action and result are control actions and events whose parameters are represented as conceptual

networks whose constituent action, event, and state patterns instantiate the corresponding

patterns in the Append-to-Secure-Anchorees knowledge source (see Figure 38). For example,

Do-append appendage to helix2-1 in pal with constraints instantiates Do-append appendage to

secure-anchoree in the-pa with constraints because helix2-1 is the value bound to seeure-

anchoree.
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Focus6

Prescription _ Perform:

Goal > Exists:

Rationale _ Exists:

Do-Append Appendage to Helix2-1
In PAl with Constraints.

_HasPAirOsialtulS,complete /

Has Helix2-1 Few Locations
Has This-Focus Low Cost

Weight > 5

Status > Dynamic

Figure 40. An ACCORD Focus Decision. Focus6 is represented as a conceptual network

comprising each focus component (e.g., prescription, goal), each component's constituent action,

event, and state patterns, and the links among them. Each pattern instantiates the corresponding

pattern in the Append-to-Secure-Anchorees knowledge source. For example, Do-append

appendage to helix2-1 in pal with constraints instantiates Do-append appendage to secure-

anchoree In the-pa with constraints because helix2-1 is the value bound to secure-anchoree.



Strategy

Perform: Develop PA With Best Anchor

FOCUS "

Perform: Do-Create Partial-Arrangement

I.... I
Perform: Do-Include Secondary-Structure

i ................. I
Perform: Do-Orient.PAl About Long Constraining Helix

I........ I
Perform: Systematically Do-Position Rigid Long Constraining Constrained

Secondary-Structure In PAl with Strong Constraint

Cycle I.......... I........... I........... I............ I............ I............ I
0 6 10 15 20 25 30

Figure 41. ACCORD Representation of a Simple PROTEAN Control Plan. This control plan

is semantically equivalent to the plan shown in Figure 13. ACCORD's English-language

representation captures related sets of heuristics in concise, perspicuous control sentences.

While this figure displays only the prescriptions of control decisions, similar ACCORD

provides similarly concise and perspicuous representations of their goals and rationales.



Strategy
Perform: Quickly Do-Position Long Constraining Secondary-Structure in Current-Best

PA with Strong Constraints

Sub-Strategy
Perform: Quickly Do-Position Long Constraining Secondary-Structure (Target-Object)

in PAl with Strong Constraints

Perform: Quickly Do-Position Long Constraining Secondary-Structure (,Target-Object)
in PA2 with Strong Constraints

Focus

Perform: Quickly Do-Position Helix3-1 In PAl with Strong Constraints

I........ I

Perform: Quickly Do-Position Helix4-1 in PAl with Strong Constraints

1 ................... H
Perform: Quickly Do-Position Helix4-2 In PA2 with Strong Constraints

I................ I

Perform: Quickly Do-Positlon Helix6-2 In PA2 with Strong Constraints
I................ >

Cycle I.......... I........... _........... I............ I...... - ..... I............ t
0 5 10 15 20 25 30

Figure 42. Excerpt from a More Complex PROTEAN Control Plan. In more complex control

plans, ACCORD clearly articulates the hierarchical relationships between control decisions,

whereby the higher-level decisions summarize and prescribe sequences of subordinate decisions.

In this example, the generic control knowledge source, Refine-Parameters, generates the

excerpted plan automatically. Starting with the top-level strategy, it substitutes the values pal

and then pa2 for the phrase, current-best pa, to generate the sequence of two sub-strategies.

For each sub-strategy, it similarly substitutes values best first for the phrase, long constraining

secondary-structure, to generate sequences of focus decisions. Again, ACCORD provides

similarly concise and perspicuous representations of the goals and rationales of all control

decisions.



I recommend KSAR55:

Anchor Helix6-2 to Helix3-2 in PA2 with NOE7.

> Why?

I recommend KSAR55:

Anchor Helix6-2 to Helix3-2 in PA2 with NOE7.

because ! am trying to',

F7: Quickly Do-Position Helix6-2 in PA2 with Strong Constraints.

> Why NOE7?

NOE7 is Strong (R60).
NOE7 is a Constraint (R100).

> Why F77

I am attempting to:

FT: Quickly Do-Position Helix6-2 in PA2 with Strong Constraints.

because I am attempting to:

$3-2: Quickly Do-Position Long Constraining Secondary-Structure
in PA2 with Strong Constraints.

> Why Helix6-2?

Helix 6-2 is Long (80).
Helix 6-2 is Constralnlng (75).
Helix 6-2 Is a Secondary-Structure (100).

> Why S3-2?

I am trying to"

$3-2'. Quickly Do-Position Long Constraining Secondary-Structure
In PA2 with Strong Constraint.

because I am trying to:

$3: Quickly Do-Position Long Constraining Secondary-Structure
in Current-Best PA with Strong Constraint,

Figure 43. Explanation of the Decision to Perform KSAR55 expressed in ACCORD.



I recommend:
KSAR56_,Yoke Helix6-2 with Helix4-2 in PA2 with NOE9.

> Override with KSAR55.

lain performing:
KSAR55: Anchor Helix6-2 to Helix3-2 in PA2 with NOES.

I would like to understand why you prefer KSAR55 over KSAR56:

KSAR55: Anchor Helix6-2 to Helix3-2 in PA2 with NOES.
KSAR56: Yoke Helix6-2 with Helix4-2 in PA2 with NOE9.

is it because you prefer:
(a) Actlon = Do-Anchor over Action -- Do-Yoke?
(b) Constraint = NOE9 over Constraint = NOE8?

)a

Do you prefer Action = Do-Anchor over Action = Do-Yoke
because you wish to:
Quickly Do-Position Helix6-2 In PA2 with Strong Constraint?

> Yes

In general, do you prefer to:
Quickly Do-Position Long C0nstrainlng Secondary-Structure

in Current-Best PA with Strong Constraint?

) Yes

I am modifying my current plan.
Shall I modify the knowledge source: Build-PAs?

> Yes

I am modifying the knowledge source: Build-PAs.

Figure 44. MARCK Learns to Prefer Anchoring Actions over Yoking Actions in the Context
of ACCORD.
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Figure 46. An Expert Protein-Analyzer. The protein-analyzer's conceptual network integrates

ACCORD's knowledge of assembly actions, events, and states with EXPLORE's knowledge of

exploration actions, events, and states "and PROTEAN's and FEATURE's shared biochemistry

knowledge. It incorporates all of PROTEAN's and FEATURE's knowledge sources (not shown

here). With additional knowledge about combining its actions for particular purposes, the

protein-analyzer could, for example: (a) solve a test protein and then examine it for interesting

features; or (b) search for interesting while solving a protein and pursue only hypothesized

conformations that exhibit interesting features.

Role-Type

_,1_ _ Natural-Type
Perspect ve- Arrangement-
Role Role Concept

°T "nT
Bio hem- Bloc em-
Oblect Constraint

Moiety Constraint

Occurrence

Action Event State

/\
Explore Assemble Is-Explored Is-Assembled

Did-Explore Did-Assemble

(a)

Protein

(b)



Table 1. Descriptions of Some BB1 Application Systems.

Architecture

BB1123]

Framework

ACCORD

EXPLOREr2]

Application

AVC[43]

FEATURE[3]

ICP[34]

KRYPTO[28]

PHRED[41]

PROCHEM[ 11 ]

PROTEAN[4,25,29]

RAPS[30]

SADVISOR[ 10]

SIGHTPLAN[50]

SIMLAB[40]

Description

Blackboard-based problem solving architecture

Description

Solves arrangement problems uslng the assembly method

Notices interesting features of proteins using perspectives

Description

Plans missions for automomous vehicles

Explores protein structures for interesting features

Dynamically plans curricula for an intelligent tutoring system

Solves constraint-satisfaction problems

Plans the construction process for alrcraft components

Models protein structure based on theoretical constraints

Assembles protein structure based on empirical constraints

Diagnoses electro-mechanical systems

Advises on space station safety

Designs construction site layouts

Schedules personnel, hardware and software for flight simulation



Table 2. Someof the ConstraintsAvailableto PROTEAN

Primary structure
Atomlc structure of Individual amino acids
Van der Waals' radii of individual atoms

Peptide bond geometry
Secondary structure
Architectures of alpha-helices and beta-sheets
Molecular size
Molecular shape
Molecular density
NOE measurements
Surface data



Table3. Methodsfor SolvingArrangementProblems.

1,

2,

Select an arrangement that satisfies the constraints from a pre-enumerated set
of alternatives.

Requires Knowledge of: Alternative arrangements,
Example: A travel agent selects one of several tour "packages" that includes

all of the destinations requested by a client.

Refine a prototyplcal arrangement so as to satisfy the constraints.
Requires Knowledge of: A prototyplcal arrangement.
Example: An architect refines a prototypical U-shaped kitchen design to

Include the special appliances requested by a client.

3. Modify an almost-correct arrangement to satisfy the constraints.
Requires Knowledge of: Almost-correct arrangements.
Example: A tool designer modifies an existing tool to fit a new machine.

4. Generate a complete arrangement that satisfies the constraints.
Requires Knowledge of: A procedure for generating complete arrangements.
Example: A psychologist uses a multi-dimensional-scaling algorithm to generate

a spatial model of subjects' similarity ratings of related concepts.

° Construct an arrangement that satisfies the constraints,
Requires Knowledge of: A method for constructing arrangements,
Example: A person solves a jigsaw puzzle by placing pieces one at a time.



Table 4. Templates for Arrangement-Assembly Root Verbs.

• Assemble pa

o Define pa

• Create pa at level

• Include object In pa

• Orient pa about included-object

o Position object in pa with constraints

• Anchor anchoree to anchor In pa with constraints

• Restrict Included-object In pa with constraints

• Yoke included-object to included-object In pa with constraints

• Append appendage to.included-object In pa with constraints

• Consolidate included-objects in pa with constraints

o Integrate pa with pa

• Merge pa with pa

• Incorporate pa into pa via included-object--

, Dock pa to pa with constraints

o Coordinate pa at level and level

• Refine sub-object of object in pa from level to level

• Adjust object for sub-object in pa



Table 5._ Examples of ACCORD Prescriptions

,

.

3,

4

°

Perform an action in a particular class of actions.
Perform: Do-Posltion Long Helix in:PAl with Strong Constraint.

Perform an action that was triggered by a particular class of events.
Respond-to-Events-that: Did-RestrictWelI-Restricted Anchoree in PAl

with Constraint.

Perform an action that was enabled by a particular class of states.
Respond-to-States-in-which: Has Anchoree Few Locations.

Perform an action that causes a particular class of events.
Cause: Did-Restrict Helix2-1 in PAl with Constraint.

Perform an action that promotes a particular class of states.
Perform: Is-Positioned Helix2-1 in PAl with Strong Constraint.



.

o

.

Table 6. Examples of ACCORD Goals.

Achieve a state In which a particular class of events has occurred.
Until:

Did-Restrict Helix2-1 !n PAl with Constraint.

Achieve a state in which a particular class of actions is executable.
Until:

Can Perform:
Do-Append Helix2-3 to Helix in PAl with Constraint.

Achieve a state in which a particular class of actions has been executed.
Did Perform:

Do-Append Helix2-3 to Helix in PAl with Constraint.


